Associations of Cardiorespiratory Fitness and Adiposity With Arterial Stiffness and Arterial Dilatation Capacity in Response to a Bout of Exercise in Children

in Pediatric Exercise Science
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $68.00

1 year subscription

USD  $90.00

Student 2 year subscription

USD  $129.00

2 year subscription

USD  $168.00

Purpose: To investigate the associations of directly measured peak oxygen uptake (V˙O2peak) and body fat percentage (BF%) with arterial stiffness and arterial dilatation capacity in children. Methods: Findings are based on 329 children (177 boys and 152 girls) aged 8–11 years. V˙O2peak was assessed by a maximal cardiopulmonary exercise test on a cycle ergometer and scaled by lean body mass (LM). BF% and LM were measured by bioelectrical impedance. Stiffness index (measure of arterial stiffness) and change in reflection index (ΔRI, measure of arterial dilatation capacity) were assessed by pulse contour analysis. Data were analyzed by linear regression models. Results: V˙O2peak/LM was positively associated with ΔRI in boys adjusted for age and BF% (β = 0.169, P = .03). Further adjustments for systolic blood pressure, heart rate, and the study group had no effect on this association, but additional adjustment for clinical puberty attenuated it (β = 0.171, P = .07). BF% was inversely related to ΔRI in boys adjusted for age and V˙O2peak/LM (β = −0.171, P = .03). V˙O2peak or BF% was not associated with ΔRI in girls or with stiffness index in either boys or girls. Conclusion: Increasing cardiorespiratory fitness and decreasing adiposity may improve arterial health in childhood, especially among boys.

Agbaje, Haapala, Lintu, Viitasalo, Väistö, Veijalainen, Tompuri, and Lakka are with the Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Northern Savo, Finland. Haapala is also with the Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland. Khan is with the Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Northern Savo, Finland. Tompuri, Laitinen, and Lakka are with the Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland. Lakka is also with the Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland.

Agbaje (andrew.agbaje@uef.fi) is corresponding author.
  • 1.

    Agbaje AO, Haapala EA, Lintu N, et al. Peak oxygen uptake cut-points to identify children at increased cardiometabolic risk—the PANIC study. Scand J Med Sci Sports. 2019;29:16–24. PubMed ID: 30230064 doi:10.1111/sms.13307

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Ahimastos AA, Formosa M, Dart AM, Kingwell BA. Gender differences in large artery stiffness pre- and post puberty. J Clin Endocrinol Metab. 2003;88(11):5375–80. PubMed ID: 14602776 doi:10.1210/jc.2003-030722

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Avolio A. Arterial stiffness. Pulse. 2013;1(1):14–28. PubMed ID: 26587425 doi:10.1159/000348620

  • 4.

    Barker AR, Williams CA, Jones AM, Armstrong N. Establishing maximal oxygen uptake in young people during a ramp cycle test to exhaustion. Br J Sports Med. 2011;45(6):498–503. PubMed ID: 19679577 doi:10.1136/bjsm.2009.063180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bhangoo A, Sinha S, Rosenbaum M, Shelov S, Ten S. Endothelial function as measured by peripheral arterial tonometry increases during pubertal advancement. Horm Res Paediatr. 2011;76(4):226–33. PubMed ID: 21778688 doi:10.1159/000328455

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Boreham CA, Ferreira I, Twisk JW, Gallagher AM, Savage MJ, Murray LJ. Cardiorespiratory fitness, physical activity, and arterial stiffness: the Northern Ireland young hearts project. Hypertension. 2004;44(5):721–6. PubMed ID: 15452034 doi:10.1161/01.HYP.0000144293.40699.9a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Castro-Pinero J, Padilla-Moledo C, Ortega FB, Moliner-Urdiales D, Keating X, Ruiz JR. Cardiorespiratory fitness and fatness are associated with health complaints and health risk behaviors in youth. J Phys Act Health. 2012;9(5):642–9. PubMed ID: 21946046 doi:10.1123/jpah.9.5.642

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320(7244):1240–3. PubMed ID: 10797032 doi:10.1136/bmj.320.7244.1240

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Considine RV, Sinha MK, Heiman ML, et al. Serum immunoreactive leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334(5):292–5. PubMed ID: 8532024 doi:10.1056/NEJM199602013340503

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Cote AT, Phillips AA, Harris KC, Sandor GGS, Panagiotopoulos C, Devlin AM. Obesity and arterial stiffness in children: systematic review and meta-analysis. Arterioscler Thromb Vasc Biol. 2015;35(4):1038–44. PubMed ID: 25633314 doi:10.1161/ATVBAHA.114.305062

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Dangardt F, Osika W, Volkmann R, Gan LM, Friberg P. Obese children show increased intimal wall thickness and decreased pulse wave velocity. Clin Physiol Funct Imaging. 2008;28(5):287–93. PubMed ID: 18476996 doi:10.1111/j.1475-097X.2008.00806.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Ekelund U, Franks PW, Wareham NJ, Åman J. Oxygen uptakes adjusted for body composition in normal-weight and obese adolescents. Obes Res. 2004;12(3):513–20. PubMed ID: 15044669 doi:10.1038/oby.2004.58

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Fernhall B, Agiovlasitis S. Arterial function in youth: window into cardiovascular risk. J Appl Physiol. 2008;105(1):325–33. PubMed ID: 18450990 doi:10.1152/japplphysiol.00001.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Ferreira I, Twisk JW, Stehouwer CD, Van Mechelen W, Kemper HC. Longitudinal changes in V˙O2max: associations with carotid IMT and arterial stiffness. Med Sci Sports Exerc. 2003;35(10):1670–8. PubMed ID: 14523303 doi:10.1249/01.MSS.0000089247.37563.4B

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Gielen S, Schuler G, Adams V. Cardiovascular effects of exercise training: molecular mechanisms. Circulation. 2010;122(12):1221–38. PubMed ID: 20855669 doi:10.1161/CIRCULATIONAHA.110.939959

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Grassi G, Seravalle G, Cattaneo BM, et al. Sympathetic activation in obese normotensive subjects. Hypertension. 1995;25(4, Pt 1):560–3. PubMed ID: 7721398 doi:10.1161/01.HYP.25.4.560

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Haapala EA, Lankhorst K, de Groot J, et al. The associations of cardiorespiratory fitness, adiposity and sports participation with arterial stiffness in youth with chronic diseases or physical disabilities. Eur J Prev Cardiol. 2017;24(10):1102–11. PubMed ID: 28374647 doi:10.1177/2047487317702792

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Haapala EA, Laukkanen JA, Takken T, Kujala UM, Finni T. Peak oxygen uptake, ventilatory threshold, and arterial stiffness in adolescents. Eur J Appl Physiol. 2018;118(11):2367–76. PubMed ID: 30099609 doi:10.1007/s00421-018-3963-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hudson LD, Rapala A, Khan T, Williams B, Viner RM. Evidence for contemporary arterial stiffening in obese children and adolescents using pulse wave velocity: a systematic review and meta-analysis. Atherosclerosis. 2015;241(2):376–86. PubMed ID: 26071661 doi:10.1016/j.atherosclerosis.2015.05.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Juonala M, Järvisalo MJ, Mäki-Torkko N, Kähönen M, Viikari JSA, Raitakari OT. Risk factors identified in childhood and decreased carotid artery elasticity in adulthood: the cardiovascular risk in young finns study. Circulation. 2005;112(10):1486–93. PubMed ID: 16129802 doi:10.1161/CIRCULATIONAHA.104.502161

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Juonala M, Magnussen CG, Berenson GS, et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N Engl J Med. 2011;365(20):1876–85. PubMed ID: 22087679 doi:10.1056/NEJMoa1010112

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kelly AS, Wetzsteon RJ, Kaiser DR, Steinberger J, Bank AJ, Dengel DR. Inflammation, insulin, and endothelial function in overweight children and adolescents: the role of exercise. J Pediatr. 2004;145(6):731–6. PubMed ID: 15580192 doi:10.1016/j.jpeds.2004.08.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lintu N, Savonen K, Viitasalo A, et al. Determinants of cardiorespiratory fitness in a population sample of girls and boys aged 6 to 8 years. J Phys Act Health. 2016;13(11):1149–55. PubMed ID: 27334557 doi:10.1123/jpah.2015-0644

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Loftin M, Sothern M, Trosclair L, O’Hanlon A, Miller J, Udall J. Scaling VO2 peak in obese and non-obese girls. Obes Res. 2001;9(5):290–6. PubMed ID: 11346670 doi:10.1038/oby.2001.36

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch Dis Child. 1970;45(239):13–23. PubMed ID: 5440182 doi:10.1136/adc.45.239.13

  • 26.

    Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in girls. Arch Dis Child. 1969;44(235):291–303. PubMed ID: 5785179 doi:10.1136/adc.44.235.291

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Meyer J, Elmenhorst J, Giegerich T, Oberhoffer R, Müller J. Controversies in the association of cardiorespiratory fitness and arterial stiffness in children and adolescents. Hypertens Res. 2017;40(7):675–8. PubMed ID: 28202944 doi:10.1038/hr.2017.19

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Millasseau SC, Kelly RP, Ritter JM, Chowienczyk PJ. Determination of age-related increases in large artery stiffness by digital pulse contour analysis. Clin Sci. 2002;103(4):371–7. PubMed ID: 12241535 doi:10.1042/cs1030371

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Montero D. The association of cardiorespiratory fitness with endothelial or smooth muscle vasodilator function. Eur J Prev Cardiol. 2015;22(9):1200–11. PubMed ID: 25301872 doi:10.1177/2047487314553780

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Moseley L, Jeukendrup AE. The reliability of cycling efficiency. Med Sci Sports Exerc. 2001;33(4);621–7. PubMed ID: 11283439 doi:10.1097/00005768-200104000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Munir S, Jiang B, Guilcher A, et al. Exercise reduces arterial pressure augmentation through vasodilation of muscular arteries in humans. Am J Physiol Circ Physiol. 2008;294(4):1645–50. PubMed ID: 18296568 doi:10.1152/ajpheart.01171.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Nichols WW, O’Rourke MF. McDonald’s Blood Flow in Arteries; Theoretical, Experimental, and Clinical Principles. 4th ed. New York, NY: Oxford University Press; 1998.

    • Search Google Scholar
    • Export Citation
  • 33.

    Nickleberry BL, Brooks GA. No effect of cycling experience on leg cycle ergometer efficiency. Med Sci Sports Exerc. 1996;28(11):1396–401. PubMed ID: 8933490 doi:10.1097/00005768-199611000-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Pahkala K, Laitinen TT, Heinonen OJ, et al. Association of fitness with vascular intima-media thickness and elasticity in adolescence. Pediatrics. 2013;132(1):e77–84. PubMed ID: 23753102 doi:10.1542/peds.2013-0041

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Rambaran C, Jiang B, Ritter JM, Shah A, Kalra L, Chowienczyk PJ. Assessment of endothelial function: comparison of the pulse wave response to beta 2-adrenoceptor stimulation with flow mediated dilatation. Br J Clin Pharmacol. 2008;65(2):238–43. PubMed ID: 17953720 doi:10.1111/j.1365-2125.2007.03006.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Reed KE, Warburton DER, Lewanczuk RZ, et al. Arterial compliance in young children: the role of aerobic fitness. Eur J Cardiovasc Prev Rehabil. 2005;12(5):492–7. PubMed ID: 16210937 doi:10.1097/01.hjr.0000176509.84165.3d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Ried-Larsen M, Grøntved A, Østergaard L, et al. Associations between bicycling and carotid arterial stiffness in adolescents: the European youth hearts study. Scand J Med Sci Sports. 2015;25(5):661–9. PubMed ID: 25156494 doi:10.1111/sms.12296

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Rossi P, Francès Y, Kingwell BA, Ahimastos AA. Gender differences in artery wall biomechanical properties throughout life. J Hypertens. 2011;29(6):1023–33. PubMed ID: 21346620 doi:10.1097/HJH.0b013e328344da5e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Rowland TW. The circulatory response to exercise: role of the peripheral pump. Int J Sports Med. 2001;22(8):558–65. PubMed ID: 11719890 doi:10.1055/s-2001-18526

  • 40.

    Saari A, Sankilampi U, Hannila M-L, Kiviniemi V, Kesseli K, Dunkel L. New Finnish growth references for children and adolescents aged 0 to 20 years: length/height-for-age, weight-for-length/height, and body mass index-for-age. Ann Med. 2011;43(3):235–48. PubMed ID: 20854213 doi:10.3109/07853890.2010.515603

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Savonen K, Krachler B, Hassinen M, et al. The current standard measure of cardiorespiratory fitness introduces confounding by body mass: the DR’s EXTRA study. Int J Obes. 2012;36(8):1135–40. PubMed ID: 22105518 doi:10.1038/ijo.2011.212

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Singhal A, Farooqi S, Cole TJ, et al. Influence of leptin on arterial distensibility: a novel link between obesity and cardiovascular disease? Circulation. 2002;106(15):1919–24. PubMed ID: 12370213 doi:10.1161/01.CIR.0000033219.24717.52

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction: implications for the syndrome of insulin resistance. J Clin Invest. 1996;97(11):2601–10. PubMed ID: 8647954 doi:10.1172/JCI118709

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Tompuri T, Lintu N, Laitinen T, Lakka TA. Relation of oxygen uptake to work rate in prepubertal healthy children—reference for VO2/W-slope and effect on cardiorespiratory fitness assessment. Clin Physiol Funct Imaging. 2018;38(4):645–51. PubMed ID: 28795487 doi:10.1111/cpf.12461

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Tompuri TT, Lakka TA, Hakulinen M, et al. Assessment of body composition by dual-energy X-ray absorptiometry, bioimpedance analysis and anthropometrics in children: the physical activity and nutrition in children study. Clin Physiol Funct Imaging. 2015;35(1):21–33. PubMed ID: 24325400 doi:10.1111/cpf.12118

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Tryggestad JB, Thompson DM, Copeland KC, Short KR. Obese children have higher arterial elasticity without a difference in endothelial function: the role of body composition. Obesity. 2012;20(1):165–71. PubMed ID: 21996664 doi:10.1038/oby.2011.309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Van Gaal LF, Mertens IL, De B lock CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444(7121):875–80. PubMed ID: 17167476 doi:10.1038/nature05487

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Veijalainen A, Tompuri T, Haapala EA, et al. Associations of cardiorespiratory fitness, physical activity, and adiposity with arterial stiffness in children. Scand J Med Sci Sports. 2016;26(8):943–50. PubMed ID: 26220100 doi:10.1111/sms.12523

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Veijalainen A, Tompuri T, Laitinen T, et al. Metabolic risk factors are associated with stiffness index, reflection index and finger skin temperature in children. Circ J. 2013;77(5):1281–8. PubMed ID: 23358414 doi:10.1253/circj.CJ-12-0704

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Veijalainen A, Tompuri T, Lakka HM, Laitinen T, Lakka TA. Reproducibility of pulse contour analysis in children before and after maximal exercise stress test: the Physical Activity and Nutrition in Children (PANIC) study. Clin Physiol Funct Imaging. 2011;31(2):132–8. PubMed ID: 21054767

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Viitasalo A, Eloranta A-M, Lintu N, et al. The effects of a 2-year individualized and family-based lifestyle intervention on physical activity, sedentary behavior and diet in children. Prev Med. 2016;87:81–8. PubMed ID: 26915641 doi:10.1016/j.ypmed.2016.02.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Viitasalo A, Laaksonen DE, Lindi V, et al. Clustering of metabolic risk factors is associated with high-normal levels of liver enzymes among 6- to 8-year-old children: the PANIC study. Metab Syndr Relat Disord. 2012;10(5):337–43. PubMed ID: 22731985 doi:10.1089/met.2012.0015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25(5):932–43. PubMed ID: 15731494 doi:10.1161/01.ATV.0000160548.78317.29

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 198 198 23
Full Text Views 24 24 1
PDF Downloads 17 17 2