Active Versus Passive Recovery in High-Intensity Intermittent Exercises in Children: An Exploratory Study

in Pediatric Exercise Science
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $68.00

1 year subscription

USD  $90.00

Student 2 year subscription

USD  $129.00

2 year subscription

USD  $168.00

This study aimed to compare the effect of active recovery (AR) versus passive recovery (PR) on time to exhaustion and time spent at high percentages of peak oxygen uptake (peakV˙O2) during short, high-intensity intermittent exercises in children. Twelve children (9.5 [0.7] y) underwent a graded test and 2 short, high-intensity intermittent exercises (15 s at 120% of maximal aerobic speed) interspersed with either 15 seconds of AR (50% of maximal aerobic speed) or 15-second PR until exhaustion. A very large effect (effect size = 2.42; 95% confidence interval, 1.32 to 3.52) was observed for time to exhaustion in favor of longer time to exhaustion with PR compared with AR. Trivial or small effect sizes were found for peakV˙O2, peakHR, and peak ventilation between PR and AR, while a moderate effect in favor of higher average V˙O2 values (effect size = −0.87; 95% confidence interval, −1.76 to −0.01) was found using AR. The difference between PR and AR for the time spent above 80% (t80%) and 90% (t90%) of peakV˙O2 was trivial. Despite the shorter running duration in AR, similar t80% and t90% were spent with AR and PR. Time spent at a high percentage of peakV˙O2 may be attained by running 3-fold shorter using AR compared with using PR.

Baquet, Dupont, Gamelin, Aucouturier, and Berthoin are with the Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France. Dupont is also with The Football Exchange, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.

Baquet (georges.baquet@univ-lille.fr) is corresponding author.
  • 1.

    Bailey RC, Olson J, Pepper SL, Porszasz J, Barstow TJ, Cooper DM. The level and tempo of children’s physical activities: an observation study. Med Sci Sports Exerc. 1995;27:1033–41. doi:10.1249/00005768-199507000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Baquet G, Berthoin S, Dupont G, Blondel N, Fabre C, Van Praagh E. Effects of high intensity intermittent training on peakVO2 in prepubertal children. Int J Sports Med. 2002;23:439–44. PubMed ID: 12215964 doi:10.1055/s-2002-33742

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Baquet G, Gamelin FX, Aucouturier J, Berthoin S. Cardiorespiratory responses to continuous and intermittent exercises in children. Int J Sports Med. 2017;38(10):755–62. PubMed ID: 28783846 doi:10.1055/s-0043-111892

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Baquet G, Stratton G, Van Praagh E, Berthoin S. Improving physical activity assessment in prepubertal children with high-frequency accelerometry monitoring: a methodological issue. Prev Med. 2007;44(2):143–7. PubMed ID: 17157370 doi:10.1016/j.ypmed.2006.10.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Baquet G, Van Praagh E, Berthoin S. Endurance training and aerobic fitness in young people. Sports Med. 2003;33:1127–43. doi:10.2165/00007256-200333150-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Berthoin S, Baquet G, Dupont G, Blondel N, Mucci P. Critical velocity and anaerobic distance capacity in prepubertal children. Can J Appl Physiol. 2003;28:561–75. PubMed ID: 12904634 doi:10.1139/h03-043

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Berthoin S, Baquet G, Rabita J, Blondel N, Lensel-Corbeil G, Gerbeaux M. Validity of the Université de Montréal track test to assess maximal aerobic speed for adolescents. J Sports Med Phys Fitness. 1999;39:107–12. PubMed ID: 10399417

    • Search Google Scholar
    • Export Citation
  • 8.

    Billat LV. Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: aerobic interval training. Sports Med. 2001;31(1):13–31. PubMed ID: 11219499 doi:10.2165/00007256-200131010-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Chidnok W, Dimenna FJ, Bailey SJ, et al. Exercise tolerance in intermittent cycling: application of the critical power concept. Med Sci Sports Exerc. 2012;44(5):966–76. doi:10.1249/MSS.0b013e31823ea28a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Dorado C, Sanchis-Moysi J, Calbet JA. Effects of recovery mode on performance, O2 uptake, and O2 deficit during high-intensity intermittent exercise. Can J Appl Physiol. 2004; 29(3):227–44. PubMed ID: 15199225 doi:10.1139/h04-016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Dotan R, Falk B, Raz A. Intensity effect of active recovery from glycolytic exercise on decreasing blood lactate concentration in prepubertal children. Med Sci Sports Exerc. 2000;32(3):564–70. doi:10.1097/00005768-200003000-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Dupont G, Berthoin S. Time spent at a high percentage of VO2max for short intermittent runs: active versus passive recovery. Can J Appl Physiol. 2004;29(suppl.):3–16. PubMed ID: 15602083 doi:10.1139/h2004-054

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Dupont G, Berthoin S. Time spent at VO2max: a methodological issue. Int J Sports Med. 2003;24:291–7. PubMed ID: 12784172 doi:10.1055/s-2003-39503

  • 14.

    Dupont G, Blondel N, Berthoin S. Performance for short intermittent runs: active recovery vs. passive recovery. Eur J Appl Physiol. 2003;89:548–54. PubMed ID: 12734760 doi:10.1007/s00421-003-0834-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Dupont G, Blondel N, Lensel-Corbeil G, Berthoin S. Critical velocity and time spent at a high level of VO2 for short intermittent runs at supramaximal velocities. Can J Appl Physiol. 2002;27:103–15. PubMed ID: 12179954 doi:10.1139/h02-008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Dupont G, Moalla W, Guinhouya C, Ahmaidi S, Berthoin S. Passive versus active recovery during high-intensity intermittent exercise. Med Sci Sports Exerc. 2004;36:302–8. doi:10.1249/01.MSS.0000113477.11431.59

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Fairchild TJ, Armstrong AA, Rao A, Liu H, Lawrence S, Fournier PA. Glycogen synthesis in muscle fibers during active recovery from intense exercise. Med Sci Sports Exerc. 2003;35(4):595–602. doi:10.1249/01.MSS.0000058436.46584.8E

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Falk B, Dotan R. Child-adult differences in the recovery from high-intensity exercise. Exerc Sport Sci Rev. 2006;34:107–12. PubMed ID: 16829737 doi:10.1249/00003677-200607000-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Fawkner SG, Armstrong N. Oxygen uptake kinetic response to exercise in children. Sports Med. 2003;33:651–69. PubMed ID: 12846589 doi:10.2165/00007256-200333090-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hopkins W. A scale of magnitudes for effect statistics. A New View of Statistics. 2002. Retrieved from http://www.sportsci.org/resource/stats/effectmag.html

    • Search Google Scholar
    • Export Citation
  • 21.

    Lohman TG. Advances in Body Composition Assessment. Current issues in exercise science series (Monograph N°3). Champaign, IL: Human Kinetics; 1992, pp. 65–77.

    • Search Google Scholar
    • Export Citation
  • 22.

    McLaughlin JE, King GA, Howley ET, Bassett DR Jr, Ainsworth BE. Validation of the COSMED K4 b2 portable metabolic system. Int J Sports Med. 2001;22:280–4. PubMed ID: 11414671 doi:10.1055/s-2001-13816

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Midgley AW, Mc Naughton LR. Time at or near VO2max during continuous and intermittent running. A review with special reference to considerations for the optimisation of training protocols to elicit the longest time at or near VO2max. J Sports Med Phys Fitness. 2006;46(1):1–14. PubMed ID: 16596093

    • Search Google Scholar
    • Export Citation
  • 24.

    Midgley AW, McNaughton LR, Wilkinson M. Is there an optimal training intensity for enhancing the maximal oxygen uptake of distance runners?: empirical research findings, current opinions, physiological rationale and practical recommendations. Sports Med. 2006;36:117–32. PubMed ID: 16464121 doi:10.2165/00007256-200636020-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Millet GP, Candau R, Fattori P, Bignet F, Varray A. VO2 responses to different intermittent runs at velocity associated to VO2max. Can J Appl Physiol. 2003;28:410–23. PubMed ID: 12955868 doi:10.1139/h03-030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Nédélec M, McCall A, Carling C, Legall F, Berthoin S, Dupont G. Recovery in soccer: part II-recovery strategies. Sports Med. 2013;43:9–22. doi:10.1007/s40279-012-0002-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Ratel S, Bedu M, Hennegrave A, Doré E, Duché P. Effects of age and recovery duration on peak power output during repeated cycling sprints. Int J Sports Med. 2002;23:397–402. doi:10.1055/s-2002-33737

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Ratel S, Duché P, Hennegrave A, Van Praagh E, Bedu M. Acid-base balance during repeated cycling sprints in boys and men. J Appl Physiol. 2002;92:479–85. doi:10.1152/japplphysiol.00495.2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Rejeski WJ. Perceived exertion: an active or passive process? J Sport Psychol. 1985;7:371–8. doi:10.1123/jsp.7.4.371

  • 30.

    Tabata I, Nishimura K, Kouzaki M, et al. Effects of moderate-intensity intermittent training and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc. 1996;28:1327–30. doi:10.1097/00005768-199610000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Tanner JM. Growth at Adolescence. 2nd ed. Oxford, UK: Blackwell; 1962.

  • 32.

    Thévenet D, Leclair E, Tardieu-Berger M, Berthoin S, Regueme S, Prioux J. Influence of recovery intensity on time spent at maximal oxygen uptake in young, endurance-trained athletes. J Sport Sci. 2008;26(12):1313–21. doi:10.1080/02640410802072697

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Thévenet D, Tardieu-Berger M, Berthoin S, Prioux J. Influence of recovery mode (passive vs. active) on time spent at maximal oxygen uptake during an intermittent session in young and endurance-trained athletes. Eur J Appl Physiol. 2007;99(2):133–42. doi:10.1007/s00421-006-0327-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Timmons BW, Bar-Or O. RPE during prolonged cycling with and without carbohydrate ingestion in boys and men. Med Sci Sports Exerc. 2003;35:1901–7. doi:10.1249/01.MSS.0000093752.46408.AF

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Tolfrey K, Campbell IG, Batterham AM. Aerobic trainability of prepubertal boys and girls. Pediatr Exerc Sci. 1998;10:248–63. doi:10.1123/pes.10.3.248

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Utter AC, Robertson RJ, Nieman DC, Kang J. Children’s OMNI scale of perceived exertion: walking/running evaluation. Med Sci Sports Exerc. 2002;34:139–44. doi:10.1097/00005768-200201000-00021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Welk GJ, Corbin CB, Dale D. Measurement issues in the assessment of physical activity in children. Res Q Exerc Sport. 2000;71:59–73. PubMed ID: 25680015 doi:10.1080/02701367.2000.11082788

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Zafeiridis A, Dalamitros A, Dipla K, Manou V, Galanis N, Kellis S. Recovery during high-intensity intermittent anaerobic exercise in boys, teens, and men. Med Sci Sports Exerc. 2005;37:505–12. doi:10.1249/01.MSS.0000155394.76722.01

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Zafeiridis A, Rizos S, Sarivasiliou H, Kazias A, Dipla K, Vrabas IS. The extent of aerobic system activation during continuous and interval exercise protocols in young adolescents and men. Appl Physiol Nutr Metab. 2011;36(1), 128–36. doi:10.1139/H10-096

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Zafeiridis A, Sarivasiliou H, Dipla K, Vrabas IS. The effects of heavy continuous versus long and short intermittent aerobic exercise protocols on oxygen consumption, heart rate, and lactate responses in adolescents. Eur J Appl Physiol. 2010;110(1):17–26. PubMed ID: 20383773 doi:10.1007/s00421-010-1467-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 147 147 21
Full Text Views 15 15 4
PDF Downloads 5 5 1