Effects of Acute Physical Exercise With Low and High Cognitive Demands on Executive Functions in Children: A Systematic Review

in Pediatric Exercise Science
View More View Less
  • 1 Paderborn University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $69.00

1 year online subscription

USD  $92.00

Student 2 year online subscription

USD  $131.00

2 year online subscription

USD  $175.00

Purpose: Whereas many studies addressed the relation between acute physical exercise and executive functions (EF) in children, the effects of various modalities of acute exercise on EF still remain unclear. This systematic review investigated the effects of exercise with low and high cognitive demands on speed of processing and accuracy of performance in tasks examining inhibition, working memory, and cognitive flexibility in children. Method: A systematic literature research in electronic databases was performed. Controlled trials assessing the effects of acute exercise on EF in a pre–post design were included. Results: Ten studies involving a total of 890 participants revealed positive effects in working memory performance in speed of processing after acute exercises with low cognitive demands compared with seated rest, mixed results for inhibition after exercises with low and high cognitive demands, and mixed results for cognitive flexibility with low cognitive demands. Concerning accuracy, only mixed results were found for inhibition after exercises with low and high cognitive demands. Conclusion: The differentiated effects of acute exercises with low and high cognitive demands led to more positive effects in speed of processing compared with accuracy of performance. Further investigations including assessment of neurophysiological parameters of EF are needed.

Paschen, Lehmann, and Baumeister are with Exercise Science and Neuroscience Unit, Department of Exercise & Health, Paderborn University, Paderborn, Germany. Kehne is with the Didactics of Sports, Department of Exercise & Health, Paderborn University, Paderborn, Germany.

Paschen (linda.paschen@upb.de) is corresponding author.
  • 1.

    Ainsworth BE, Haskell WL, Herrmann SD, et al. 2011 Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sport Exerc. 2011;43:157581. doi:10.1249/MSS.0b013e31821ece12

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sport Exerc. 2000;32 9 Suppl :S498516. PubMed ID: 10993420 doi:10.1097/00005768-200009001-00009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Best JR. Effects of physical activity on children’s executive function: contributions of experimental research on aerobic exercise. Dev Rev. 2010;30(4):33151. PubMed ID: 21818169 doi:10.1016/j.dr.2010.08.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Best JR, Miller PH. A developmental perspective on executive function. Child Dev. 2010;81(6):164160. PubMed ID: 21077853 doi:10.1111/j.1467-8624.2010.01499.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Best JR, Miller PH, Jones LL. Executive functions after age 5 : changes and correlates. Dev Rev. 2009;29(3):180200. PubMed ID: 20161467 doi:10.1016/j.dr.2009.05.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Chen A-G, Yan J, Yin H-C, Pan C-Y, Chang Y-K. Effects of acute aerobic exercise on multiple aspects of executive function in preadolescent children. Psychol Sport Exerc. 2014;15(6):62736. doi:10.1016/j.psychsport.2014.06.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    de Greeff JW, Bosker RJ, Oosterlaan J, Visscher C, Hartman E. Effects of physical activity on executive functions, attention and academic performance in preadolescent children: a meta-analysis. J Sci Med Sport. 2018;21(5):5017. PubMed ID: 29054748 doi:10.1016/j.jsams.2017.09.595

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71(1):4456. PubMed ID: 10836557 doi:10.1111/1467-8624.00117

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Diamond A. The early development of executive functions. In: Bialystok E, Craik FIM, editors. Lifespan Cognition: Mechanisms of Change. New York, NY: Oxford University Press; 2006, pp. 7095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Diamond A. Executive functions. Annu Rev Psychol. 2013;64:13568. doi:10.1146/annurev-psych-113011-143750

  • 11.

    Diamond A. Effects of physical exercise on executive functions: going beyond simply moving to moving with thought. Ann Sport Med Res. 2015;2(1):1011.

    • Search Google Scholar
    • Export Citation
  • 12.

    Diamond A. Why improving and assessing executive functions early in life is critical. In: Griffin JA, McCardle P, Freund LS, editors. Executive Function in Preschool-Age Children: Integrating Measurement, Neurodevelopment, and Translational Research. Washington, DC: American Psychological Association; 2016, pp. 1143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Donnelly JE, Hillman CH, Castelli D, et al. Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. Med Sci Sports Exerc. 2016;48(6):1197222. PubMed ID: 27182986 doi:10.1249/MSS.0000000000000901

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Egger F, Conzelmann A, Schmidt M. The effect of acute cognitively engaging physical activity breaks on children’s executive functions: too much of a good thing? Psychol Sport Exerc. 2018;36:17886. doi:10.1016/j.psychsport.2018.02.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Ellemberg D, St-Louis-Deschênes M. The effect of acute physical exercise on cognitive function during development. Psychol Sport Exerc. 2010;11(2):1226. doi:10.1016/j.psychsport.2009.09.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Engelhardt LE, Harden KP, Tucker-Drob EM, Church JA. The neural architecture of executive functions is established by middle childhood. Neuroimage. 2019;185:47989. PubMed ID: 30312810 doi:10.1016/j.neuroimage.2018.10.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Gallotta MC, Emerenziani GP, Franciosi E, Meucci M, Guidetti L, Baldari C. Acute physical activity and delayed attention in primary school students. Scand J Med Sci Sports. 2015;25(3):e3318. PubMed ID: 25134779 doi:10.1111/sms.12310

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Gallotta MC, Guidetti L, Franciosi E, Emerenziani GP, Bonavolontá V, Baldari C. Effects of varying type of exertion on children’s attention capacity. Med Sci Sport Exerc. 2012;44(3):5505. doi:10.1249/MSS.0b013e3182305552

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Giedd JN, Blumenthal J, Jeffries NO, et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci. 1999;2(10):8613. PubMed ID: 10491603 doi:10.1038/13158

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Gogtay N, Giedd JN, Lusk L, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA. 2004;101(21):81749. PubMed ID: 15148381 doi:10.1073/pnas.0402680101

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Higgins JP, Altman DG, Sterne JA. Assessing risk of bias in included studies. In: Higgins JP, Churchill R, Chandler J, Cumpston M, editors. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.2.0 (updated June 2017); Cochrane; 2017:8:18:73. www.training.cochrane.org/handbook

    • Search Google Scholar
    • Export Citation
  • 22.

    Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci. 2008;9(1):5865. PubMed ID: 18094706 doi:10.1038/nrn2298

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hillman CH, Kamijo K, Scudder M. A review of chronic and acute physical activity participation on neuroelectric measures of brain health and cognition during childhood. Prev Med. 2011;52 Suppl 1:S218. doi:10.1016/j.ypmed.2011.01.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Jäger K, Schmidt M, Conzelmann A, Roebers CM. Cognitive and physiological effects of an acute physical activity intervention in elementary school children [Internet]. Front Psychol. 2014;5:1473. doi:10.3389/fpsyg.2014.01473

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Janssen M, Chinapaw MJM, Rauh SP, Toussaint HM, van Mechelen W, Verhagen EALM. A short physical activity break from cognitive tasks increases selective attention in primary school children aged 10–11. Mental Health Phys Act. 2014;7(3 Suppl I):12934. doi:10.1016/j.mhpa.2014.07.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Ludyga S, Gerber M, Brand S, Holsboer-Trachsler E, Pühse U. Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: a meta-analysis. Psychophysiology. 2016;53:161126. PubMed ID: 27556572 doi:10.1111/psyp.12736

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Meltzer L. Executive Function in Education: From Theory to Practice. New York, NY: The Guilford Press; 2007.

  • 28.

    Mierau A, Hülsdünker T, Mierau J, Hense A, Hense J, Strüder HK. Acute exercise induces cortical inhibition and reduces arousal in response to visual stimulation in young children. Int J Dev Neurosci. 2014;34:18. PubMed ID: 24412583 doi:10.1016/j.ijdevneu.2013.12.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cogn Psychol. 2000;41(1):49100. PubMed ID: 10945922 doi:10.1006/cogp.1999.0734

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Moher D, Shamseer L, Clarke M, et al. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):19. doi:10.1186/2046-4053-4-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Niemann C, Wegner M, Voelcker-Rehage C, Holzweg M, Arafat AM, Budde H. Influence of acute and chronic physical activity on cognitive performance and saliva testosterone in preadolescent school children. Mental Health Phys Act. 2013;6(3, SI):197204. doi:10.1016/j.mhpa.2013.08.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Perrey S, Besson P. Studying brain activity in sports performance: Contributions and issues. 2018;240:24767.

  • 33.

    Pesce C. Shifting the focus from quantitative to qualitative exercise characteristics in exercise and cognition research. J Sport Exerc Psychol. 2012;34(6):76686. PubMed ID: 23204358 doi:10.1123/jsep.34.6.766

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Piepmeier AT, Etnier JL. Brain-derived neurotrophic factor (BDNF) as a potential mechanism of the effects of acute exercise on cognitive performance. J Sport Health Sci. 2015;4(1):1423. doi:10.1016/j.jshs.2014.11.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Rusnáková Š, Rektor I. The neurocognitive networks of the executive functions. In: Ajeena I, editor. Advances in Clinical Neurophysiology; Croatia: InTech. 2012:16170. doi:10.5772/51602

    • Search Google Scholar
    • Export Citation
  • 36.

    Sibley BA, Etnier JL. The relationship between physical activity and cognition in children : a meta-analysis. Pediatr Exerc Sci. 2003;15:24356. doi:10.1123/pes.15.3.243

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Tomporowski PD, McCullick B, Pendleton DM, Pesce C. Exercise and children’s cognition: the role of exercise characteristics and a place for metacognition. J Sport Health Sci. 2015;4(1):4755. doi:10.1016/j.jshs.2014.09.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Vazou S, Smiley-Oyen A. Moving and academic learning are not antagonists: acute effects on executive function and enjoyment. J Sport Exerc Psychol. 2014;36(5):47485. PubMed ID: 25356611 doi:10.1123/jsep.2014-0035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Verburgh L, Königs M, Scherder EJA, Oosterlaan J. Physical exercise and executive functions in preadolescent children, adolescents and young adults: a meta-analysis. Br J Sports Med. 2014;48:9739. PubMed ID: 23467962 doi:10.1136/bjsports-2012-091441

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 612 591 75
Full Text Views 46 46 2
PDF Downloads 25 25 1