The Impact of Different Exercise Intensities on Vasodilation and Shear Rate Patterns in Children

in Pediatric Exercise Science
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $68.00

1 year subscription

USD $90.00

Student 2 year subscription

USD $129.00

2 year subscription

USD $168.00

Purpose: The effect of exercise intensity on vasodilator function is poorly understood in children. The authors compared the acute effect of high-intensity interval exercise (HIIE) with moderate-intensity steady-state exercise (MISS) on postexercise vasodilation and shear patterns in 7- to 12- year-old children. Methods: Superficial femoral artery diameter, shear rates, and flow-mediated dilation were measured pre, immediately following (post), and 1 hour after (post60) HIIE (six 1-min sprints at 90% peak power [Wmax], with 1-min recovery) and MISS (15 min at 44% Wmax). Results: Baseline superficial femoral artery diameter increased similarly following both HIIE (pre 4.23 [0.41] mm, post 4.73 [0.56] mm) and MISS (pre 4.28 [0.56] mm, post 4.59 [0.64] mm), returning to preexercise values post60. Blood flow and antegrade shear rate were increased post HIIE and MISS, but to a greater extent, post HIIE (P < .05). Retrograde shear rate was attenuated post both exercise conditions and remained post60 (P < .001). There was a decline in flow-mediated dilation postexercise (HIIE Δ −2.9%; MISS Δ −2.4%), which was no longer apparent when corrected for baseline diameter. Conclusion: Acute bouts of external work-matched HIIE or MISS exert a similar impact on shear-mediated conduit artery vasodilation and flow-mediated dilation in children, and this is reversed 1 hour after exercise.

McManus and Sletten are with the Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada. Green is with the School of Human Sciences (Sport and Exercise Science), Faculty of Science, The University of Western Australia, Crawley, Western Australia, Australia.

McManus (ali.mcmanus@ubc.ca) is corresponding author.
Pediatric Exercise Science
Article Sections
References
  • 1.

    Aggoun YSzezepanski IBonnet D. Noninvasive assessment of arterial stiffness and risk of atherosclerotic events in children. Pediatr Res. 2005;58:1738. PubMed ID: 16055929 doi:10.1203/01.PDR.0000170900.35571.CB

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Amano TKai SNakajima Met al. Sweating responses to isometric hand-grip exercise and forearm muscle metaboreflex in prepubertal children and elderly. Exp Physiol. 2017;102(2):21427. PubMed ID: 27859912 doi:10.1113/EP085908

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Atkinson CLCarter HHDawson EANaylor LHThijssen DHGreen DJ. Impact of handgrip exercise intensity on brachial artery flow-mediated dilation. Eur J Appl Physiol. 2015;115(8):170513. PubMed ID: 25805181 doi:10.1007/s00421-015-3157-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Atkinson CLLewis NCSCarter HHThijssen DHJAinslie PNGreen DJ. Impact of sympathetic nervous system activity on post-exercise flow-mediated dilatation in humans. J Physiol. 2015;593(23):514556. PubMed ID: 26437709 doi:10.1113/JP270946

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Atkinson GBatterham AM. Allometric scaling of diameter change in the original flow-mediated dilation protocol. Atherosclerosis. 2013;226(2):4257. PubMed ID: 23261170 doi:10.1016/j.atherosclerosis.2012.11.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Barker ARWelsman JRFulford FWelford DArmstrong N. Quadriceps muscle energetics during incremental exercise in children and adults. Med Sci Sports Exerc. 2010;42(7):130313. PubMed ID: 20019637 doi:10.1249/MSS.0b013e3181cabaeb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Barker ARWilliams CAArmstrong N. Establishing maximal oxygen uptake in young people during a ramp cycle test to exhaustion. Br J Sports Med. 2011;45(6):498503. PubMed ID: 19679577 doi:10.1136/bjsm.2009.063180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Behnke BJArmstrong RBDelp MD. Adrenergic control of vascular resistance varies in muscles composed of different fiber types: influence of the vascular endothelium. Am J Physiol Regul Integr Comp Physiol. 2011;301(3):R78390. PubMed ID: 21677269 doi:10.1152/ajpregu.00205.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Birk GKDawson EABatterham AMet al. Effects of exercise intensity on flow mediated dilation in healthy humans. Int J Sports Med. 2013;34(5):40914. PubMed ID: 23041960

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bond BHind SWilliams CABarker AR. The acute effect of exercise intensity on vascular function in adolescents. Med Sci Sports Exerc. 2015;47(12):262835. PubMed ID: 26057942 doi:10.1249/MSS.0000000000000715

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Chuensiri NTanaka HSuksom D. The acute effects of supramaximal high-intensity intermittent exercise on vascular function in lean vs. obese prepubescent boys. Pediatr Exerc Sci. 2015;27(4):5039. PubMed ID: 26252080 doi:10.1123/pes.2015-0100

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Cole TJBellizzi MCFlegal KMDietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320(7244):12403. PubMed ID: 10797032 doi:10.1136/bmj.320.7244.1240

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Davies PFSpaan JAKrams R. Shear stress biology of the endothelium. Ann Biomed Eng. 2005;33(12):17148. PubMed ID: 16389518 doi:10.1007/s10439-005-8774-0

  • 14.

    Dawson EACable NTGreen DJThijssen DGJ. Do acute effects of exercise on vascular function predict adaptation to training? Eur J Appl Physiol. 2018;11852330. PubMed ID: 29234916 doi:10.1007/s00421-017-3724-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Dawson EAGreen DJCable NTThijssen DH. Effects of acute exercise on flow-mediated dilatation in healthy humans. J Appl Physiol. 2013;115(11):158998. PubMed ID: 24030665 doi:10.1152/japplphysiol.00450.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    DiCarlo SEChen CYCollins HL. Onset of exercise increases lumbar sympathetic nerve activity in rats. Med Sci Sports Exerc. 1996;28(6):67784. PubMed ID: 8784755 doi:10.1097/00005768-199606000-00006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Eston RGLambrick DMRowlands AV. The perceptual response to exercise of progressively increasing intensity in children aged 7–8 years: validation of a pictorial curvilinear ratings of perceived exertion scale. Psychophysiol. 2009;46(4):84351. doi:10.1111/j.1469-8986.2009.00826.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Evanoff NGKelly ASSteinberher JDengel DR. Peak shear and peak flow mediated dilation: a time course relationship. J Clin Ultrasound. 2016;44(3):1827. PubMed ID: 26689837 doi:10.1002/jcu.22324

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ghiselli ASerafini MNatella FScaccini C. Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med. 2000;29(11):110614. PubMed ID: 11121717 doi:10.1016/S0891-5849(00)00394-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Gonzales JUThompson BCThistlethwaite JRScheuermann BW. Association between exercise hemodynamics and changes in local vascular function following acute exercise. Appl Physiol Nutr Metab. 2011;36(1):13744. PubMed ID: 21326388 doi:10.1139/H10-097

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Goto CHigashi YKimura Met al. Effect of different intensities of exercise on endothelium dependent vasodilation in humans: role of endothelium dependent nitric oxide and oxidative stress. Circulation. 2003;108(5):5305. PubMed ID: 12874192 doi:10.1161/01.CIR.0000080893.55729.28

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Green DJBilsborough WNaylor LHet al. Comparison of forearm blood flow responses to incremental handgrip and cycle ergometer exercise: relative contribution of nitric oxide. J Physiol. 2005;562(Pt 2):61728.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Green DJHopman MTEPadilla JLaughlin MHThijssen DHJ. Vascular adaptation to exercise in humans: role of hemodynamic stimuli. Physiol Rev. 2017;97(2):495528. PubMed ID: 28151424 doi:10.1152/physrev.00014.2016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    He XKu DN. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech Eng. 1996;118(1):748. PubMed ID: 8833077 doi:10.1115/1.2795948

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Johnson BDPadilla JWallace JP. The exercise dose affects oxidative stress and brachial artery flow-mediated dilation in trained men. Eur J Appl Physiol. 2012;112(1):3342. PubMed ID: 21472439 doi:10.1007/s00421-011-1946-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Mills ARosenberg MStratton Get al. The effect of exergaming on vascular function in children. J Pediatr. 2013;163(3):80610. PubMed ID: 23684507 doi:10.1016/j.jpeds.2013.03.076

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Mirwald RLBaxter-Jones ADGBailey DABeunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):68994. PubMed ID: 11932580

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Oertel G. Morphometric analysis of normal skeletal muscles in infancy, childhood and adolescence: an autopsy study. J Neurol Sci. 1988;88(1–3):30313. PubMed ID: 3225628 doi:10.1016/0022-510X(88)90227-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Ouriel K. Peripheral arterial disease. Lancet. 2001;358(9289):125764. PubMed ID: 11675083 doi:10.1016/S0140-6736(01)06351-6

  • 30.

    Padilla JSimmons GHBender SBArce-Esquivel AAWhyte JJLaughlin MH. Vascular effects of exercise: endothelial adaptations beyond active muscle beds. Physiology. 2011;26(3):13245. PubMed ID: 21670160 doi:10.1152/physiol.00052.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Rubin DACastner DMPham HNg JAdams EJudelson DA. Hormonal and metabolic responses to a resistance exercise protocol in lean children, obese children and lean adults. Pediatr Exerc Sci. 2014;26(4):44454. PubMed ID: 25372379 doi:10.1123/pes.2014-0073

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Taddei SVirdis AGhiadoni LMagagna ASalvetti A. Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation. 1998;97(22):22229. PubMed ID: 9631871 doi:10.1161/01.CIR.97.22.2222

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Thijssen DHBlack MAPyke KEet al. Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am J Physiol Heart Circ Physiol. 2011;300(1):H212. PubMed ID: 20952670 doi:10.1152/ajpheart.00471.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Thijssen DHBullens LMvan Bemmel MMet al. Does arterial shear explain the magnitude of flow-mediated dilation: a comparison between young and older humans. Am J Physiol Heart Circ Physiol. 2009;296(1):H5764. PubMed ID: 19028795 doi:10.1152/ajpheart.00980.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Thijssen DHDawson EABlack MAHopman MTECable NTGreen DJ. Heterogeneity in conduit artery function in humans: impact of arterial size. Am J Physiol Heart Circ Physiol. 2008;295(5):H192734. PubMed ID: 18775852 doi:10.1152/ajpheart.00405.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Timmons BWTarnopolsky MABar-Or O. Immune responses to strenuous exercise and carbohydrate intake in boys and men. Pediatr Res. 2004;56(2):22734. PubMed ID: 15181192 doi:10.1203/01.PDR.0000132852.29770.C5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Tinken TMThijssen DHJHopkins NDawson EACable NTGreen DJ. Shear stress mediates endothelial adaptations to exercise training in humans. Hypertension. 2010;55(2):3128. PubMed ID: 20048193 doi:10.1161/HYPERTENSIONAHA.109.146282

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Tolfrey KArmstrong N. Child-adult differences in whole blood lactate responses to incremental treadmill exercise. Br J Sports Med. 1995;29(3):1969. PubMed ID: 8800856 doi:10.1136/bjsm.29.3.196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Vogel RACorretti MCPlotnick GD. Effect of a single high-fat meal on endothelial function in healthy subjects. Am J Cardiol. 1997;79(3):3504. PubMed ID: 9036757 doi:10.1016/S0002-9149(96)00760-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Wanne OPSHaapoja E. Blood pressure during exercise in healthy children. Eur J Appl Physiol. 1988;58(1–2):627. doi:10.1007/BF00636604

  • 41.

    Watts KBeye PSiafarikas Aet al. Exercise training normalises vascular dysfunction and improves central adiposity in obese adolescents. J Am Coll Cardiol. 2004;43(10):18237. PubMed ID: 15145107 doi:10.1016/j.jacc.2004.01.032

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Woodman RJPlayford DAWatts GFet al. Improved analysis of brachial artery ultrasound using a novel edge-detection software system. J Appl Physiol. 2001;91:92937. PubMed ID: 11457812 doi:10.1152/jappl.2001.91.2.929

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Ziegler TBouzourene KHarrison VJBrunner HRHayoz D. Influence of oscillatory and unidirectional flow environments on the expression of endothelin and nitric oxide synthase in cultured endothelial cells. Arterioscler Thromb Vasc Biol. 1998;18(5):68692. PubMed ID: 9598825 doi:10.1161/01.ATV.18.5.686

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 76 76 76
Full Text Views 7 7 7
PDF Downloads 2 2 2
Altmetric Badge
PubMed
Google Scholar