Sprint Interval Training and the School Curriculum: Benefits Upon Cardiorespiratory Fitness, Physical Activity Profiles, and Cardiometabolic Risk Profiles of Healthy Adolescents

in Pediatric Exercise Science
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $68.00

1 year subscription

USD  $90.00

Student 2 year subscription

USD  $129.00

2 year subscription

USD  $168.00

Background: This study examined the impact of a 4-week school-based sprint interval training program on cardiorespiratory fitness (CRF), daily physical activity (PA) behavior, and cardiometabolic risk (CMR) outcomes in adolescents. Methods: A total of 56 adolescents (22 females) were allocated to either an intervention (n = 22; 17.0 [0.3] y) or control group (n = 30; 16.8 [0.5] y). Intervention group performed 5 to 6, 30 second “all out” running sprints, interspersed with 30-second rest intervals, 3 times per week, for 4 consecutive weeks, whereas control group performed their normal physical education lessons. CRF was estimated from the 20-m multistage fitness test and PA behavior was determined using accelerometry. Fasting blood samples were obtained to measure biochemical markers of CMR. Results: Significant group × time interactions were observed for CRF (5.03 [1.66 to 8.40]; P < .001; d = 0.95), sedentary time (136.15 [91.91 to 180.39]; P = .004; d = 1.8), moderate PA (57.20 [32.17 to 82.23]; P < .001; d = 1.5), vigorous PA (5.40 [4.22 to 6.57]; P < .001; d = 1.2), fasting insulin (0.37 [−0.48 to 1.21]; P = .01; d = 1.0), homeostasis model of assessment-insulin resistance (0.26 [0.15 to 0.42]; P < .001; d = 0.9), and clustered CMR score (0.22 [−0.05 to 0.68]; P < .001; d = 10.63). Conclusion: Findings of this study indicate that 4 weeks of school-based sprint interval training improves CRF, improves PA profiles, and maintains CMR in adolescents during the school term.

Martin-Smith and Macdonald are with the Department of Sport & Physical Activity, Edge Hill University, Ormskirk, United Kingdom. Buchan, Baker, Sculthorpe, and Easton are with the Institute of Clinical Exercise and Health Science, University of the West of Scotland, Lanarkshire Campus, Scotland, United Kingdom. Knox is with the Exercise Science Department, California Lutheran University, Thousand Oaks, CA, USA. Grace is with the Department of Human Movement and Sport Sciences, Faculty of Health, Federation University Australia, Ballarat, VIC, Australia.

Martin-Smith (Martinr@edgehill.ac.uk) is corresponding author.
  • 1.

    Babraj JA, Vollaard NB, Keast C, Guppy FM, Cottrell G, Timmons JA. Extremely short duration high intensity interval training substantially improves insulin action in young healthy males. BMC Endocr Disord. 2009;9:3. PubMed ID: 19175906 doi:10.1186/1472-6823-9-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Barnett A, Chan LYS, Bruce IC. A preliminary study of the 20 m multistage shuttle run as a predictor of a peak VO2 in Hong Kong Chinese students. Pediatr Exerc Sci. 1993;5:4250. doi:10.1123/pes.5.1.42

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Bartlett JD, Close GL, MacLaren DP, Gregson W, Drust B, Morton JP. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence. J Sports Sci. 2011;29(6):54753. PubMed ID: 21360405 doi:10.1080/02640414.2010.545427

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Beets MW, Okely A, Weaver RG, et al. The theory of expanded, extended, and enhanced opportunities for youth physical activity promotion. Int J Behav Nutr Phys Act. 2016;13(1):120. PubMed ID: 27852272 doi:10.1186/s12966-016-0442-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bond B, Weston KL, Williams CA, Barker AR. Perspectives on high-intensity interval exercise for health promotion in children and adolescents. J Sports Med. 2017;8:24365.

    • Search Google Scholar
    • Export Citation
  • 6.

    Borde R, Smith JJ, Sutherland R, Nathan N, Lubans DR. Methodological considerations and impact of school-based interventions on objectively measured physical activity in adolescents: a systematic review and meta-analysis. Obes Rev. 2017;18(4):47690. PubMed ID: 28187241 doi:10.1111/obr.12517

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Boyle SE, Jones GL, Walters SJ. Physical activity among adolescents and barriers to delivering physical education in Cornwall and Lancashire, UK: a qualitative study of heads of PE and heads of schools. BMC Public Health. 2008;8:273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Buchan DS, Ollis S, Young JD, Cooper SM, Shield JP, Baker JS. High intensity interval running enhances measures of physical fitness but not metabolic measures of cardiovascular disease risk in healthy adolescents. BMC Public Health. 2013;13:498. PubMed ID: 23705968 doi:10.1186/1471-2458-13-498

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Buchan DS, Ollis S, Young JD, et al. The effects of time and intensity of exercise on novel and established markers of CVD in adolescent youth. Am J Hum Biol. 2011;23(4):51726. PubMed ID: 21465614 doi:10.1002/ajhb21166

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Buchan DS, Thomas NE, Baker JS. Novel risk factors of cardiovascular disease and their associations between obesity, physical activity and physical fitness. J Public Health Res. 2012;1(1):5966. PubMed ID: 25170447 doi:10.4081/jphr.2012.e11

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Buchan DS, Young JD, Simpson AD, Thomas NE, Cooper SM, Baker JS. The effects of a novel high intensity exercise intervention on established markers of cardiovascular disease and health in Scottish adolescent youth. J Public Health Res. 2012;1(2):1557. PubMed ID: 25170459 doi:10.4081/jphr.2012.e24

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Cale L, Duncombe R. Achieving “high quality” physical education: an intervention in a city school. J Educ Health. 2008;26(2):289.

    • Search Google Scholar
    • Export Citation
  • 13.

    Carrel AL, Clark RR, Peterson S, Eickhoff J, Allen DB. School-based fitness changes are lost during the summer vacation. Arch Pediatr Adolesc Med. 2007;161(6):5614. PubMed ID: 17548760 doi:10.1001/archpedi.161.6.561

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Cohen J. Statistical Power Analysis for the Behavioural Sciences. 2nd ed. New York, NY: Routledge; 1988.

  • 15.

    Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320:12403. PubMed ID: 10797032 doi:10.1136/bmj.320.7244.1240

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cole TJ, Flegal KM, Nicholls D, Jackson AA. Body mass index cut offs to define thinness in children and adolescents: international survey. BMJ. 2007;335:194. PubMed ID: 17591624 doi:10.1136/bmj.39238.399444.55

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Corte de Araujo AC, Roschel H, Picanco AR, et al. Similar health benefits of endurance and high-intensity interval training in obese children. PLoS ONE. 2012;7(8):e42747. PubMed ID: 22880097 doi:10.1371/journal.pone.0042747

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Costigan SA, Eather N, Plotnikoff RC, Taaffe DR, Lubans DR. High-intensity interval training for improving health-related fitness in adolescents: a systematic review and meta-analysis. Br J Sports Med. 2015;49(19):125361. PubMed ID: 26089322 doi:10.1136/bjsports-2014-094490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Costigan SA, Ridgers ND, Eather N, Plotnikoff RC, Harris N, Lubans DR. Exploring the impact of high intensity interval training on adolescents’ objectively measured physical activity: findings from a randomized controlled trial. J Sports Sci. 2018;36(10):108794. PubMed ID: 28726550 doi:10.1080/02640414.2017.1356026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Currie C, van der Sluijs W, Whitehead R, et al. Findings From the HBSC 2014 Survey in Scotland Health Behaviour in School-Aged Children. Scotland, UK: World Health Organization Collaborative Cross-National Study (HBSC); 2015.

    • Search Google Scholar
    • Export Citation
  • 21.

    Department of Health. New Physical Activity Guidelines. London, UK: Department of Health; 2011.

  • 22.

    Dumith SC, Gigante DP, Domingues MR, Kohl HW. Physical activity change during adolescence: a systematic review and a pooled analysis. Int J Epidemiol. 2011;40(3):68598. PubMed ID: 21245072 doi:10.1093/ije/dyq272

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Ekkekakis P, Parfitt G, Petruzzello SJ. The pleasure and displeasure people feel when they exercise at different intensities: decennial update and progress towards a tripartite rationale for exercise intensity prescription. J Sports Med. 2011;41(8):64171. doi:10.2165/11590680-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499502. PubMed ID: 4337382

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Grace FM, Herbert P, Ratcliffe JW, New KJ, Baker JS, Sculthorpe NF. Age related vascular endothelial function following lifelong sedentariness: positive impact of cardiovascular conditioning without further improvement following low frequency high intensity interval training. Physiol Rep. 2015;3(1):e12234. PubMed ID: 25626864 doi:10.14814/phy2.12234

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hollis JL, Williams AJ, Sutherland R, et al. A systematic review and meta-analysis of moderate-to-vigorous physical activity levels in elementary school physical education lessons. Prev Med. 2017;86:3454. doi:10.1016/j.ypmed.2015.11.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Jung ME, Bourne JE, Little JP. Where does HIT fit? An examination of the affective response to high-intensity intervals in comparison to continuous moderate- and continuous vigorous-intensity exercise in the exercise intensity-affect continuum. PLoS ONE. 2014;9(12):e114541. PubMed ID: 25486273 doi:10.1371/journal.pone.0114541

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Kalman K, Inchley J, Sigmundova D, et al. Secular trends in moderate-to-vigorous physical activity in 32 countries from 2002 to 2010: a cross-national perspective. Eur J Public Health. 2015;25(2):3740. doi:10.1093/eurpub/ckv024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Koubaa A, Trabelsi H, Masmoudi L, et al. The effects of intermittent and continuous training on body composition, cardiorespiratory fitness and lipid profile in obese adolescents. IOSR J Pharm. 2013;3(2):317. doi:10.9790/3021-03213136

    • Search Google Scholar
    • Export Citation
  • 30.

    Ledoux M, Lambert J, Reeder BA, Despres JP. A comparative analysis of weight to height and waist to hip circumference indices as indicators of the presence of cardiovascular disease risk factors. Canadian heart health surveys research group. CMAJ. 1997;157(suppl 1):S328.

    • Search Google Scholar
    • Export Citation
  • 31.

    Leger LA, Mercier D, Gadoury C, Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci. 1988;6(2):93101. PubMed ID: 3184250 doi:10.1080/02640418808729800

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Logan GRM, Harris N, Duncan S, Schofield G. A review of adolescent high-intensity interval training. Sports Med. 2014;44(8):107185. PubMed ID: 24743929 doi:10.1007/s40279-014-0187-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Martin R, Buchan DS, Baker JS, Young J, Sculthorpe N, Grace FM. Sprint Interval Training (SIT) is an effective method to maintain Cardiorespiratory Fitness (CRF) and glucose homeostasis in Scottish adolescents. Biol Sport. 2015;32(4):30713. PubMed ID: 26681833 doi:10.5604/20831862.1173644

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Mattocks C, Ness A, Leary S, et al. Use of accelerometers in a large field-based study of children: protocols, design issues, and effects on precision. J Phys Act Health. 2008;5(suppl 1):S98111. doi:10.1123/jpah.5.s1.s98

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    McLure SA, Summerbell CD, Reilly JJ. Objectively measured habitual physical activity in a highly obesogenic environment. Child Care Health Dev. 2009;35(3):36975. PubMed ID: 19397599 doi:10.1111/j.1365-2214.2009.00946.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Owens S, Galloway R, Gutin B. The case for vigorous physical activity in youth. Am J Lifestyle Med. 2015;11(2):96115. doi:10.1177/1559827615594585

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Parikh T, Stratton G. Influence of intensity of physical activity on adiposity and cardiorespiratory fitness in 5-18 year olds. Sports Med. 2011;41(6):47788. PubMed ID: 21615189 doi:10.2165/11588750-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Park I, Schutz RW. An introduction to latent growth models: analysis of repeated measures physical performance data. Res Q Exerc Sport. 2005;76(2):17692. PubMed ID: 16128485 doi:10.1080/02701367.2005.10599279

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Racil G, Ben Ounis O, Hammouda O, et al. Effects of high vs moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. Eur J Appl Physiol. 2013;113(10):253140. PubMed ID: 23824463 doi:10.1007/s00421-013-2689-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Saunders TJ, Chaput JP, Tremblay MS. Sedentary behaviour as an emerging risk factor for cardiometabolic diseases in children and youth. Can J Diabetes. 2014;38(1):5361. PubMed ID: 24485214 doi:10.1016/j.jcjd.2013.08.266

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Schmidt MD, Magnussen CG, Rees E, Dwyer T, Venn AJ. Childhood fitness reduces the long-term cardiometabolic risks associated with childhood obesity. Int J Obes. 2016;40(7):113440. doi:10.1038/ijo.2016.61

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Scottish Government. Scottish Health Survey 2015. Edinburgh, UK: Scottish Government; 2016.

  • 43.

    Stern SE, Williams K, Ferrannini E, DeFronzo RA, Bogardus C, Stern MP. Identification of individuals with insulin resistance using routine clinical measurements. Diabetes. 2005;54(2):3339. PubMed ID: 15677489 doi:10.2337/diabetes.54.2.333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Tanner J. Growth at Adolescence. Oxford, UK: Blackwell; 1962.

  • 45.

    Taylor KL, Weston M, Batterham AM. Evaluating intervention fidelity: an example from a high-intensity interval training study. PLoS ONE. 2015;10(4):e0125166. PubMed ID: 25902066 doi:10.1371/journal.pone.0125166

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    The Scottish Government. The Scottish Index of Multiple Deprivation 2016. 2016. http://simd.scot/2016/#/simd2016/BTTTFTT/9/-4.0000/55.9000/. Accessed September 26, 2018.

    • Export Citation
  • 47.

    Tjonna AE, Stolen TO, Bye A, et al. Aerobic interval training reduces cardiovascular risk factors more than a multitreatment approach in overweight adolescents. Clin Sci. 2009;116(4):31726. PubMed ID: 18673303 doi:10.1042/CS20080249

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Treuth MS, Schmitz K, Catellier DJ, et al. Defining accelerometer thresholds for activity intensities in adolescent girls. Med Sci Sports Exerc. 2004;36(7):125966. PubMed ID: 15235335

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Trost SG, Pate RR, Freedson PS, Sallis JF, Taylor WC. Using objective physical activity measures with youth: how many days of monitoring are needed? Med Sci Sports Exerc. 2000;32(2):42631. PubMed ID: 10694127 doi:10.1097/00005768-200002000-00025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    van der Ploeg HP, Hillsdon M. Is sedentary behaviour just physical inactivity by another name? Int J Behav Nutr Phys Act. 2017;14(1):142. PubMed ID: 29058587 doi:10.1186/s12966-017-0601-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Weston KL, Azevedo LB, Bock S, Weston M, George KP, Batterham AM. Effect of novel, school-based high-intensity interval training (HIT) on cardiometabolic health in adolescents: project FFAB (Fun Fast Activity Blasts)—an exploratory controlled before-and-after trial. PLoS ONE. 2016;11(8):e0159116. PubMed ID: 27486660 doi:10.1371/journal.pone.0159116

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Whyte LJ, Gill JM, Cathcart AJ. Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism. 2010;59(10):14218. PubMed ID: 20153487 doi:10.1016/j.metabol.2010.01.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Zimmet P, Alberti KG, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in children and adolescents—an IDF consensus report. Pediatr Diabetes. 2007;8(5):299306. PubMed ID: 17850473 doi:10.1111/j.1399-5448.2007.00271.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 497 497 72
Full Text Views 41 41 0
PDF Downloads 18 18 0