Effects of Plyometric Training on Physical Performance of Young Male Soccer Players: Potential Effects of Different Drop Jump Heights

in Pediatric Exercise Science
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $68.00

1 year subscription

USD $90.00

Student 2 year subscription

USD $129.00

2 year subscription

USD $168.00

Purpose: To compare the effects of plyometric drop jump (DJ) training against those induced by regular soccer training and assess the transference effect coefficient (TEC) of DJs (“trained exercises”) performed from 20- (DJ20) and 40-cm (DJ40) height boxes with respect to different physical qualities (jumping, linear and change of direction speed, kicking, endurance, and maximal strength) in youth male soccer players. Methods: Participants were randomly divided into a control group (n = 20; age: 13.5 [1.9] y) and a DJ training group (n = 19; age: 13.2 [1.8] y), and trained for 7 weeks. A 2-way analysis of variance for repeated measures with the within-subject factor time (preintervention and postintervention) and between-subject factor group (intervention vs control) was performed. To calculate the TECs between the trained exercises (DJ20 and DJ40) and the physical tests, the ratio between the “result gains” (effect size [ES]) in the analyzed physical qualities and the result gains in the trained exercises were calculated. The TECs were only calculated for variables presenting an ES ≥ 0.2. Results: Significant improvements (ES = 0.21–0.46; P < .05) were observed in the DJ training group, except in linear sprint performance. The control group improved only the maximal strength (ES = 0.28; P < .05). Significant differences were observed in all variables (ES = 0.20–0.55; P < .05) in favor of the DJ training group, except for maximal strength (group × time interaction). Conclusions: A plyometric training scheme based on DJs was able to significantly improve the physical performance of youth male soccer players. Overall, greater TECs were observed for DJ40 (0.58–1.28) than DJ20 (0.55–1.21).

Ramirez-Campillo and Alvarez are with the Laboratory of Human Performance, Quality of Life and Wellness Research Group, Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno, Chile. García-Pinillos is with the Department of Physical Education, Sports and Recreation, Universidad de La Frontera, Temuco, Chile. Gentil is with the Faculdade de Educação Física e Dança, Universidade Federal de Goiás, Goiânia, Brazil. Moran is with the University Centre Hartpury, University of the West of England, Gloucester, United Kingdom. Pereira and Loturco are with NAR—Nucleus of High Performance in Sport, São Paulo, Brazil.

Loturco (irineu.loturco@terra.com.br) is corresponding author.
Pediatric Exercise Science
Article Sections
References
  • 1.

    Andrade DCManzo OBeltrán ARet al. Kinematic and neuromuscular measures of intensity during plyometric jumps. J Strength Cond Res. In Press 2017. PubMed ID: 28820857 doi:10.1519/JSC.0000000000002143

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Asadi AArazi HRamirez-Campillo RMoran JIzquierdo M. Influence of maturation stage on agility performance gains after plyometric training: a systematic review and meta-analysis. J Strength Cond Res. 2017;31(9):260917. PubMed ID: 28557853 doi:10.1519/JSC.0000000000001994

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Asadi ARamirez-Campillo RArazi HSaez de Villarreal E. The effects of maturation on jumping ability and sprint adaptations to plyometric training in youth soccer players. J Sports Sci. 2018;36(21):240511. PubMed ID: 29611771 doi:10.1080/02640414.2018.1459151

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Barnes CArcher DTHogg BBush MBradley PS. The evolution of physical and technical performance parameters in the English Premier League. Int J Sports Med. 2014;35(13):1095100. PubMed ID: 25009969 doi:10.1055/s-0034-1375695

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bedoya AAMiltenberger MRLopez RM. Plyometric training effects on athletic performance in youth soccer athletes: a systematic review. J Strength Cond Res. 2015;29(8):235160. PubMed ID: 25756326 doi:10.1519/JSC.0000000000000877

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bobbert MF. Drop jumping as a training method for jumping ability. Sports Med. 1990;9(1):722. PubMed ID: 2408119 doi:10.2165/00007256-199009010-00002

  • 7.

    Bompa TO. Power Training for Sport: Plyometrics for Maximum Power Development. Oakville, Canada: Mosaic Press; 1996.

  • 8.

    Bouguezzi RChaabene HNegra YRamirez-Campillo RJlalia ZMkaouer BHachana Y. Effects of different plyometric training frequency on measures of athletic performance in prepuberal male soccer players. J Strength Cond Res. In Press 2018. PubMed ID: 29401202 doi:10.1519/JSC.0000000000002486

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Brumitt JWilson VEllis NPetersen JZita CJReyes J. Preseason lower extremity functional test scores are not associated with lower quadrant injury—a validation study with normative data on 395 division III athletes. Int J Sports Phys Ther. 2018;13(3):41021. PubMed ID: 30038827 doi:10.26603/ijspt20180410

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Chaabene HNegra Y. The effect of plyometric training volume in prepubertal male soccer players’ athletic performance. Int J Sports Physiol Perform. 2017;12(9):120511. doi:10.1123/ijspp.2016-0372

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Coyle EF. Integration of the physiological factors determining endurance performance ability. Exerc Sport Sci Rev. 1995;23:2563. PubMed ID: 7556353 doi:10.1249/00003677-199500230-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    de Villarreal ESKellis EKraemer WJIzquierdo M. Determining variables of plyometric training for improving vertical jump height performance: a meta-analysis. J Strength Cond Res. 2009;23(2):495506. PubMed ID: 19197203 doi:10.1519/JSC.0b013e318196b7c6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Faude OKoch TMeyer T. Straight sprinting is the most frequent action in goal situations in professional football. J Sports Sci. 2012;30(7):62531. PubMed ID: 22394328 doi:10.1080/02640414.2012.665940

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Granacher UPrieske OMajewski MBusch DMuehlbauer T. The role of instability with plyometric training in sub-elite adolescent soccer players. Int J Sports Med. 2015;36(5):38694. PubMed ID: 25665004 doi:10.1055/s-0034-1395519

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hachana YChaabène HNabli MAAttia AMoualhi JFarhat NElloumi M. Test-retest reliability, criterion-related validity, and minimal detectable change of the Illinois agility test in male team sport athletes. J Strength Cond Res. 2013;27(10):27529. PubMed ID: 23439329 doi:10.1519/JSC.0b013e3182890ac3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hansen LBangsbo JTwisk JKlausen K. Development of muscle strength in relation to training level and testosterone in young male soccer players. J Appl Physiol. 1999;87(3):11417. PubMed ID: 10484588 doi:10.1152/jappl.1999.87.3.1141

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hopkins WGMarshall SWBatterham AMHanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    le Gall FCarling CWilliams MReilly T. Anthropometric and fitness characteristics of international, professional and amateur male graduate soccer players from an elite youth academy. J Sci Med Sport. 2010;13(1):905. PubMed ID: 18835220 doi:10.1016/j.jsams.2008.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Loturco IJeffreys IKobal Ret al. Acceleration and speed performance of Brazilian elite soccer players of different age-categories. J Hum Kinet. 2018;64:20518. PubMed ID: 30429912 doi:10.1515/hukin-2017-0195

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Loturco IPereira LAKobal Ret al. Improving sprint performance in soccer: effectiveness of jump squat and Olympic push press exercises. PLoS ONE. 2016;11(4):e0153958. PubMed ID: 27100085 doi:10.1371/journal.pone.0153958

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Loturco IPereira LAKobal RZanetti VKitamura KAbad CCNakamura FY. Transference effect of vertical and horizontal plyometrics on sprint performance of high-level U-20 soccer players. J Sports Sci. 2015;33(20):218291. PubMed ID: 26390150 doi:10.1080/02640414.2015.1081394

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Loturco ITricoli VRoschel Het al. Transference of traditional versus complex strength and power training to sprint performance. J Hum Kinet. 2014;41:26573. PubMed ID: 25114753 doi:10.2478/hukin-2014-0054

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Markovic GMikulic P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010;40(10):85995. PubMed ID: 20836583 doi:10.2165/11318370-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Matavulj DKukolj MUgarkovic DTihanyi JJaric S. Effects of plyometric training on jumping performance in junior basketball players. J Sports Med Phys Fitness. 2001;41(2):15964. PubMed ID: 11447356

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    McKinlay BJWallace PDotan RLong DTokuno CGabriel DFalk B. Effects of plyometric and resistance training on muscle strength, explosiveness, and neuromuscular function in young adolescent soccer players. J Strength Cond Res. 2018;32(11):303950. PubMed ID: 29337833 doi:10.1519/JSC.0000000000002428

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Mersmann FBohm SSchroll ABoeth HDuda GNArampatzis A. Muscle and tendon adaptation in adolescent athletes: a longitudinal study. Scand J Med Sci Sports. 2017;27(1):7582. PubMed ID: 26644277 doi:10.1111/sms.12631

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Meylan CCronin JOliver JHughes MManson S. An evidence-based model of power development in youth soccer. Int J Sports Sci Coach. 2014;9(5):124164. doi:10.1260/1747-9541.9.5.1241

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Meylan CMalatesta D. Effects of in-season plyometric training within soccer practice on explosive actions of young players. J Strength Cond Res. 2009;23(9):260513. PubMed ID: 19910813 doi:10.1519/JSC.0b013e3181b1f330

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Moran JClark CCTRamirez-Campillo RDavies MJDrury B. A meta-analysis of plyometric training in female youth: its efficacy and shortcomings in the literature. J Strength Cond Res. In Press 2018. PubMed ID: 30052601 doi:10.1519/JSC.0000000000002768

    • Search Google Scholar
    • Export Citation
  • 30.

    Moran JJSandercock GRRamirez-Campillo RMeylan CMCollison JAParry DA. Age-related variation in male youth athletes’ countermovement jump after plyometric training: a meta-analysis of controlled trials. J Strength Cond Res. 2017;31(2):55265. PubMed ID: 28129282

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Myer GDLloyd RSBrent JLFaigenbaum AD. How young is “too young” to start training? ACSMs Health Fit J. 2013;17(5):1423. PubMed ID: 24124347 doi:10.1249/FIT.0b013e3182a06c59

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    National Strength and Conditioning Association (NSCA). A position statement: explosive/plyometric exercises. NSCA J. 1993;15:16.

  • 33.

    Negra YChaabene HFernandez-Fernandez JSammoud SBouguezzi RPrieske OGranacher U. Short-term plyometric jump training improves repeated-sprint ability in prepuberal male soccer players. J Strength Cond Res. In Press 2018. PubMed ID: 29912076 doi:10.1519/JSC.0000000000002703

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Negra YChaabene HSammoud SBouguezzi RAbbes MAHachana YGranacher U. Effects of plyometric training on physical fitness in prepuberal soccer athletes. Int J Sports Med. 2017;38(5):3707. PubMed ID: 28315285 doi:10.1055/s-0042-122337

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Palma-Muñoz IRamírez-Campillo RAzocar-Gallardo JÁlvarez CAsadi AMoran JChaabene H. Effects of progressed and non-progressed volume-based overload plyometric training on components of physical fitness and body composition variables in youth male basketball players. J Strenth Cond Res. In Press 2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Radnor JMOliver JLWaugh CMMyer GDMoore ISLloyd RS. The influence of growth and maturation on stretch-shortening cycle function in youth. Sports Med. 2018;48(1):5771. PubMed ID: 28900862 doi:10.1007/s40279-017-0785-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Ramirez-Campillo RAlvarez CGarcia-Hermoso Aet al. Methodological characteristics and future directions for plyometric jump training research: a scoping review. Sports Med. 2018;48(5):105981. PubMed ID: 29470823 doi:10.1007/s40279-018-0870-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Ramirez-Campillo RAlvarez CGarcía-Pinillos Fet al. Optimal reactive strength index: is it an accurate variable to optimize plyometric training effects on measures of physical fitness in young soccer players? J Strength Cond Res. 2018;32(4):88593. PubMed ID: 29389692 doi:10.1519/JSC.0000000000002467

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Ramirez-Campillo RAndrade DCAlvarez Cet al. The effects of interset rest on adaptation to 7 weeks of explosive training in young soccer players. J Sports Sci Med. 2014;13(2):28796. PubMed ID: 24790481

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Ramirez-Campillo RAndrade DCIzquierdo M. Effects of plyometric training volume and training surface on explosive strength. J Strength Cond Res. 2013;27(10):271422. PubMed ID: 23254550 doi:10.1519/JSC.0b013e318280c9e9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Ramirez-Campillo RBurgos CHHenriquez-Olguin Cet al. Effect of unilateral, bilateral, and combined plyometric training on explosive and endurance performance of young soccer players. J Strength Cond Res. 2015;29(5):131728. PubMed ID: 25474338 doi:10.1519/JSC.0000000000000762

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Ramirez-Campillo RGallardo FHenriquez-Olguin Cet al. Effect of vertical, horizontal, and combined plyometric training on explosive, balance, and endurance performance of young soccer players. J Strength Cond Res. 2015;29(7):178495. PubMed ID: 25559903 doi:10.1519/JSC.0000000000000827

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Ramirez-Campillo RGarcia-Pinillos FGarcia-Ramos AYanci JGentil PChaabene HGranacher U. Effects of different plyometric training frequencies on components of physical fitness in amateur female soccer players. Front Physiol. 2018;9:934. PubMed ID: 30065665 doi:10.3389/fphys.2018.00934

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Ramirez-Campillo RHenriquez-Olguin CBurgos Cet al. Effect of progressive volume-based overload during plyometric training on explosive and endurance performance in young soccer players. J Strength Cond Res. 2015;29(7):188493. PubMed ID: 25559905 doi:10.1519/JSC.0000000000000836

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Ramirez-Campillo RMeylan CAlvarez Cet al. Effects of in-season low-volume high-intensity plyometric training on explosive actions and endurance of young soccer players. J Strength Cond Res. 2014;28(5):133542. PubMed ID: 24751658 doi:10.1519/JSC.0000000000000284

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Ramirez-Campillo RMeylan CMAlvarez-Lepin Cet al. The effects of interday rest on adaptation to 6 weeks of plyometric training in young soccer players. J Strength Cond Res. 2015;29(4):9729. PubMed ID: 24149761 doi:10.1519/JSC.0000000000000283

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Read MMCisar C. The influence of varied rest interval lengths on depth jump performance. J Strength Cond Res. 2001;15(3):27983. PubMed ID: 11710651

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Stolen TChamari KCastagna CWisloff U. Physiology of soccer: an update. Sports Med. 2005;35(6):50136. PubMed ID: 15974635 doi:10.2165/00007256-200535060-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Tanner J. Growth of Adolescents. Oxford, UK: Blackwell Scientific Publications; 1962.

  • 50.

    Taube WLeukel CGollhofer A. How neurons make us jump: the neural control of stretch-shortening cycle movements. Exerc Sport Sci Rev. 2012;40(2):10615. PubMed ID: 22089697 doi:10.1097/JES.0b013e31824138da

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Triplett TWilliams CMcHenry PDoscher M. Strength and Conditioning Professional Standards and Guidelines. Colorado Springs, CO: NSCA; 2009.

    • Search Google Scholar
    • Export Citation
  • 52.

    Vaeyens RMalina RMJanssens MVan Renterghem BBourgois JVrijens JPhilippaerts RM. A multidisciplinary selection model for youth soccer: the Ghent Youth Soccer Project. Br J Sports Med. 2006;40(11):92834. PubMed ID: 16980535 doi:10.1136/bjsm.2006.029652

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Watson ABrindle JBrickson SAllee TSanfilippo J. Preseason aerobic capacity is an independent predictor of in-season injury in collegiate soccer players. Clin J Sport Med. 2017;27(3):3027. PubMed ID: 27347859 doi:10.1097/JSM.0000000000000331

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Weiss LWFrx ACWood LERelyea GEMelton C. Comparative effects of deep versus shallow squat and leg-press training on vertical jumping ability and related factors. J Strength Cond Res. 2000;14(3):2417.

    • Search Google Scholar
    • Export Citation
  • 55.

    Wisloff UCastagna CHelgerud JJones RHoff J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br J Sports Med. 2004;38(3):2858. PubMed ID: 15155427 doi:10.1136/bjsm.2002.002071

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Young WBJames RMontgomery I. Is muscle power related to running speed with changes of direction? J Sports Med Phys Fitness. 2002;42(3):2828. PubMed ID: 12094116

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Zatsiorsky VKraemer WJ. Science and Practice of Strength Training. Champaign, IL: Human Kinetics; 2006.

Article Metrics
All Time Past Year Past 30 Days
Abstract Views 33 33 33
Full Text Views 2 2 2
PDF Downloads 2 2 2
Altmetric Badge
PubMed
Google Scholar