Kinematic Comparison of Aquatic- and Land-Based Stationary Exercises in Overweight and Normal Weight Children

in Pediatric Exercise Science
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $68.00

1 year subscription

USD $90.00

Student 2 year subscription

USD $129.00

2 year subscription

USD $168.00

Purpose: This study examined lower extremity kinematics in healthy weight (HW) and overweight (OW) children during water- and land-based stationary exercises (stationary running, frontal kick, and butt kick) at light submaximal intensity. Methods: Participants included OW (N = 10; body fat percentage: 34.97 [8.60]) and HW (N = 15; body fat percentage: 18.33 [4.87]) children, aged 10 to 13 years. Spatiotemporal data, lower extremity joint kinematics, and rating of perceived exertion (RPE) were collected during water- and land-based stationary exercises. Repeated measures analysis of variance compared kinematic variables and RPE between groups and environments. A polygon area function compared coordination patterns between environments. Results: RPE responses were significantly greater in OW than HW children on land (13.6 [0.7] vs 11.6 [0.7]; P < .001), whereas the RPE responses were similar between groups in water (11.2 [0.7] vs 11.1 [0.8]; P > .05). OW children were significantly more upright than HW children during land-based exercise, whereas there were no differences observed between groups during aquatic-based exercise. The duration of stance and swing phases, angular velocity, and cadence were significantly lower in water than on land. Conclusion: Compared with HW children, OW children performed stationary exercises in a more upright posture on land, with higher RPE. However, these differences diminished in water. Aquatic-based exercise may be effective in minimizing the effects of excess mass on OW children’s ability to complete physical activity.

Yaghoubi and Shultz are with the School of Sport Exercise and Nutrition, Massey University, Wellington, New Zealand. Page and Heydari are with the School of Health Sciences, Massey University, Wellington, New Zealand. Fink is with The Human Performance Laboratory, School of Sport Exercise and Nutrition, Massey University, Palmerston North, New Zealand.

Yaghoubi (m.yaghoubi@massey.ac.nz) is corresponding author.
Pediatric Exercise Science
Article Sections
References
  • 1.

    Alberton CLAntunes AHBeilke DDet al. Maximal and ventilatory thresholds of oxygen uptake and rating of perceived exertion responses to water aerobic exercises. J Strength Cond Res. 2013;27(7):1897903. PubMed ID: 23037612 doi:10.1519/JSC.0b013e3182736e47

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Alberton CLAntunes AHPinto SSet al. Correlation between rating of perceived exertion and physiological variables during the execution of stationary running in water at different cadences. J Strength Cond Res. 2011;25(1):15562. PubMed ID: 20093964 doi:10.1519/JSC.0b013e3181bde2b5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Alberton CLCadore ELPinto SSTartaruga MPda Silva EMKruel LF. Cardiorespiratory, neuromuscular and kinematic responses to stationary running performed in water and on dry land. Eur J Appl Physiol Occup Physiol. 2011;111(6):115766. doi:10.1007/s00421-010-1747-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Alberton CLFinatto PPinto SSet al. Vertical ground reaction force responses to different head-out aquatic exercises performed in water and on dry land. J Sports Sci. 2014;33(8):795805. PubMed ID: 25356625 doi:10.1080/02640414.2014.964748

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Alberton CLPinto SSCadore Eet al. Oxygen uptake, muscle activity and ground reaction force during water aerobic exercises. Int J Sports Med. 2014;35(14):11619. PubMed ID: 25144436 doi:10.1055/s-0034-1383597

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Alberton CLPinto SSda Silva Azenha NAet al. Kinesiological analysis of stationary running performed in aquatic and dry land environments. J Hum Kinet. 2015;49:514. PubMed ID: 26839601 doi:10.1515/hukin-2015-0103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Alberton CLTartaruga MPPinto SSet al. Vertical ground reaction force during water exercises performed at different intensities. Int J Sports Med. 2013;34(10):8817. PubMed ID: 23549690 doi:10.1055/s-0032-1331757

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Balletti CGuerra FTsioukas VVernier P. Calibration of action cameras for photogrammetric purposes. Sensors. 2014;14(9):1747190. PubMed ID: 25237898 doi:10.3390/s140917471

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Batterham SIHeywood SKeating JL. Systematic review and meta-analysis comparing land and aquatic exercise for people with hip or knee arthritis on function, mobility and other health outcomes. BMC Musculoskelet Disord. 2011;12:123. PubMed ID: 21635746 doi:10.1186/1471-2474-12-123

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Belisle MRoskies ELevesque JM. Improving adherence to physical activity. Health Psychol. 1987;6(2):15972. PubMed ID: 3104026 doi:10.1037/0278-6133.6.2.159

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bernardina GRCerveri PBarros RMMarins JCSilvatti AP. In-air versus underwater comparison of 3D reconstruction accuracy using action sport cameras. J Biomech. 2017;51:7782. PubMed ID: 27974154 doi:10.1016/j.jbiomech.2016.11.068

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Blakemore VJFink PWLark SDShultz SP. Mass affects lower extremity muscle activity patterns in children’s gait. Gait Posture. 2013;38(4):60913. PubMed ID: 23485357 doi:10.1016/j.gaitpost.2013.02.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Borg EKaijser L. A comparison between three rating scales for perceived exertion and two different work tests. Scand J Med Sci Sports. 2006;16(1):579. PubMed ID: 16430682 doi:10.1111/j.1600-0838.2005.00448.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Cadenas-Sanchez CArellano RVanrenterghem JLopez-Contreras G. Kinematic adaptations of forward and backward walking on land and in water. J Hum Kinet. 2015;49:1524. PubMed ID: 26839602 doi:10.1515/hukin-2015-0104

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Chan CWRudins A. Foot biomechanics during walking and running. Mayo Clin Proc. 1994;69(5):44861. PubMed ID: 8170197 doi:10.1016/S0025-6196(12)61642-5

  • 16.

    Chevutschi AAlberty MLensel GPardessus VThevenon A. Comparison of maximal and spontaneous speeds during walking on dry land and water. Gait Posture. 2009;29(3):4037. PubMed ID: 19081722 doi:10.1016/j.gaitpost.2008.10.059

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Ekkekakis PLind E. Exercise does not feel the same when you are overweight: the impact of self-selected and imposed intensity on affect and exertion. Int J Obes. 2006;30(4):65260. doi:10.1038/sj.ijo.0803052

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Ferguson B. ACSM’s guidelines for exercise testing and prescription 9th Ed. 2014. J Can Chiropr Assoc. 2014;58(3):328.

  • 19.

    Fontana HBHaupenthal ARuschel CHubert MRidehalgh CRoesler H. Effect of gender, cadence, and water immersion on ground reaction forces during stationary running. J Orthop Sport Phys. 2012;42(5):43743. doi:10.2519/jospt.2012.3572

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Fontana HBRuschel CHaupenthal AHubert MRoesler H. Ground reaction force and cadence during stationary running sprint in water and on land. Int J Sports Med. 2015;36(06):4903. doi:10.1055/s-0034-1398576

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Gappmaier ELake WNelson AGFisher AG. Aerobic exercise in water versus walking on land: effects on indices of fat reduction and weight loss of obese women. J Sport Med Phys Fitness. 2006;46(4):5649. PubMed ID: 17119521

    • Search Google Scholar
    • Export Citation
  • 22.

    Gill SVHung YC. Effects of overweight and obese body mass on motor planning and motor skills during obstacle crossing in children. Res Dev Disabil. 2014;35(1):4653. PubMed ID: 24230986 doi:10.1016/j.ridd.2013.10.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Gill SVHung YC. Influence of weight classification on children stepping over obstacles. Am J Phys Med Rehabil. 2012;91(7):62530. PubMed ID: 22469876 doi:10.1097/PHM.0b013e31824fa81e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Gushue DLHouck JLerner AL. Effects of childhood obesity on three-dimensional knee joint biomechanics during walking. J Pediatr Orthop. 2005;25(6):7638. PubMed ID: 16294133 doi:10.1097/01.bpo.0000176163.17098.f4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Haddock BLSiegel SRWikin LD. The addition of a video game to stationary cycling: the impact on energy expenditure in overweight children. Open Sports Sci J. 2009;2:426. PubMed ID: 19946380 doi:10.2174/1875399X00902010042

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Harrison RAHillman MBulstrode S. Loading of the lower limb when walking partially immersed: implications for clinical practice. Physiotherapy. 1992;78(3):1646. doi:10.1016/S0031-9406(10)61377-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Haupenthal AFontana HBRuschel CSantos DPRoesler H. Ground reaction forces in shallow water running are affected by immersion level, running speed and gender. J Sci Med Sport. 2013;16(4):34852. PubMed ID: 22999392 doi:10.1016/j.jsams.2012.08.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Howley ETBassett DRWelch HG. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc. 1995;27(9):1292301. PubMed ID: 8531628 doi:10.1249/00005768-199509000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Keller TSWeisberger AMRay JLHasan SSShiavi RGSpengler DM. Relationship between vertical ground reaction force and speed during walking, slow jogging, and running. Clin Biomech (Bristol Avon). 1996;11(5):2539. doi:10.1016/0268-0033(95)00068-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Kelley GAKelley KS. Effects of exercise in the treatment of overweight and obese children and adolescents: a systematic review of meta-analyses. J Obes. 2013;783103(10):24. PubMed ID: 24455215 doi:10.1155/2013/783103

    • Search Google Scholar
    • Export Citation
  • 31.

    Kruel LFBeilke DDKanitz ACet al. Cardiorespiratory responses to stationary running in water and on land. J Sports Sci Med. 2013;12(3):594600. PubMed ID: 24149170

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Lopera CASilva DFBianchini JAet al. Effect of water- versus land-based exercise training as a component of a multidisciplinary intervention program for overweight and obese adolescents. Physiol Behav. 2016;165:36573. PubMed ID: 27553575 doi:10.1016/j.physbeh.2016.08.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    McCarthy HDCole TJFry TJebb SAPrentice AM. Body fat reference curves for children. Int J Obes. 2006;30(4):598602. doi:10.1038/sj.ijo.0803232

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    McMillan AGAuman NLCollier DNBlaise Williams DS. Frontal plane lower extremity biomechanics during walking in boys who are overweight versus healthy weight. Pediatr Phys Ther. 2009;21(2):18793. PubMed ID: 19440128 doi:10.1097/PEP.0b013e3181a348be

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    McMillan AGPulver AMCollier DNWilliams DS. Sagittal and frontal plane joint mechanics throughout the stance phase of walking in adolescents who are obese. Gait Posture. 2010;32(2):2638. PubMed ID: 20573511 doi:10.1016/j.gaitpost.2010.05.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Nantel JBrochu MPrince F. Locomotor strategies in obese and non-obese children. Obesity. 2006;14(10):178994. PubMed ID: 17062809 doi:10.1038/oby.2006.206

  • 37.

    Rush ECPuniani KValencia MEDavies PSPlank LD. Estimation of body fatness from body mass index and bioelectrical impedance: comparison of New Zealand European, Maori and Pacific Island children. Eur J Clin Nutr. 2003;57(11):1394401. PubMed ID: 14576752 doi:10.1038/sj.ejcn.1601701

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Shultz SPAnner JHills AP. Paediatric obesity, physical activity and the musculoskeletal system. Obes Rev. 2009;10(5):57682. PubMed ID: 19460114 doi:10.1111/j.1467-789X.2009.00587.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Shultz SPHills APSitler MRHillstrom HJ. Body size and walking cadence affect lower extremity joint power in children’s gait. Gait Posture. 2010;32(2):24852. PubMed ID: 20570152 doi:10.1016/j.gaitpost.2010.05.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Shultz SPSitler MRTierney RTHillstrom HJSong J. Effects of pediatric obesity on joint kinematics and kinetics during 2 walking cadences. Arch Phys Med Rehabil. 2009;90(12):214654. PubMed ID: 19969183 doi:10.1016/j.apmr.2009.07.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Yaghoubi MFink PWPage WHShultz SP. Stationary exercise in overweight and normal-weight children. Pediatr Exerc Sci. 2018;10:18. doi:10.1123/pes.2018-0086

    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 31 31 31
Full Text Views 1 1 1
PDF Downloads 1 1 1
Altmetric Badge
PubMed
Google Scholar