A Pedometer-Based Physically Active Learning Intervention: The Importance of Using Preintervention Physical Activity Categories to Assess Effectiveness

in Pediatric Exercise Science
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $68.00

1 year subscription

USD $90.00

Student 2 year subscription

USD $129.00

2 year subscription

USD $168.00

Purpose: To assess physical activity outcomes of a pedometer-based physically active learning (PAL) intervention in primary school children. Methods: Six paired schools were randomly allocated to either a 6-week teacher-led pedometer-based physically active learning intervention or a control (n = 154, female = 60%, age = 9.9 [0.3] y). Accelerometers assessed total daily sedentary time, light physical activity (LPA), and moderate-to-vigorous physical activity (MVPA). Preintervention mean daily MVPA minutes grouped participants as Low Active (<45 min/d) and High Active (≥45 min/d). Results: From the final sample size, the intervention (n = 52) significantly improved LPA versus control (n = 31, P = .04), by reducing sedentary time. More intervention (+10%) than control (+3%) pupils met the 60 minutes per day guidelines. In both intervention subgroups, pupils spent less time in LPA (P < .05) versus control. The greatest nonsignificant increase was found in the Low Active pupils MVPA levels. Conclusions: Improvements in LPA were statistically significant in the intervention versus control group. In subgroup analysis, Low Active pupils in the intervention showed the greatest beneficial effects and the Most Active pupils may have replaced MVPA and sedentary time with LPA. The intervention group housed clusters of pupils showing variable responsiveness, justifying routine examination of subgroup variability in future studies.

Morris, Daly-Smith, McKenna, and Zwolinsky are with the School of Sport, Centre of Active Lifestyle, Institute for Sport, Physical Activity & Leisure, Leeds Beckett University, Leeds, United Kingdom. Defeyter is with Psychology, Northumbria University, Newcastle, United Kingdom. Lloyd is with Public Health, Redcar & Cleveland Borough Council, Redcar & Cleveland, United Kingdom. Fothergill is with Health, Sport and Exercise Psychology, School of Psychology, Newcastle University, Newcastle, United Kingdom. Graham is with Social Work, Education & Community Wellbeing, Northumbria University, Newcastle, United Kingdom.

Morris (Jade.Morris@leedsbeckett.ac.uk) is corresponding author.
Pediatric Exercise Science
Article Sections
References
  • 1.

    Andersen LBRiddoch CKriemler SHills APHills A. Physical activity and cardiovascular risk factors in children. Br J Sports Med. 2011;45(11):8716. PubMed ID: 21791456 doi:10.1136/bjsports-2011-090333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bailey DPFairclough SJSavory LA. Accelerometry-assessed sedentary behaviour and physical activity levels during the segmented school day in 10-14-year-old children: the HAPPY study. Eur J Pediatr. 2012;171:180513. PubMed ID: 22983026 doi:10.1007/s00431-012-1827-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Biddle SJO’Connell SBraithwaite RE. Sedentary behaviour interventions in young people: a meta-analysis. Br J Sports Med. 2011;45(11):93742. PubMed ID: 21807671 doi:10.1136/bjsports-2011-090205

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Boddy LMMurphy MHCunningham Cet al. Physical activity, cardiorespiratory fitness, and clustered cardiometabolic risk in 10- to 12-year-old school children: the REACH Y6 study. Am J Hum Biol. 2014;26(4):44651. PubMed ID: 24599609 doi:10.1002/ajhb.22537

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Cain KLSallis JFConway TLVan Dyck DCalhoon L. Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health. 2013;10(3):43750. PubMed ID: 23620392 doi:10.1123/jpah.10.3.437

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Canadian Society for Exercise Physiology. Canadian Physical Activity Guidelines and Canadian Sedentary Behaviour Guidelines: Your Plan to Get Active Every Day. Ottawa: Canadian Science Publishing; 2012.

    • Search Google Scholar
    • Export Citation
  • 7.

    Carson VRidgers NDHoward BJet al. Light-intensity physical activity and cardiometabolic biomarkers in US adolescents. PLoS ONE. 2013;8(8):e71417. PubMed ID: 23951157 doi:10.1371/journal.pone.0071417

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Chief Medical Officers of England Scotland Wales and Northern Ireland. Start Active Stay Active: A Report on Physical Activity for Health From the Four Home Countries Chief Medical Officers. London, UK: Department of Health, Physical Activity, Health Improvement and Protection; 2011.

    • Search Google Scholar
    • Export Citation
  • 9.

    Cole TJFreeman JVPreece MA. Body mass index reference curves for the UK, 1990. Arch Dis Child. 1995;73(1):259. PubMed ID: 7639544 doi:10.1136/adc.73.1.25

  • 10.

    Daley A. Exercise and depression: a review of reviews. J Clin Psychol Med Settings. 2008;15(2):1407. PubMed ID: 19104978 doi:10.1007/s10880-008-9105-z

  • 11.

    Demetriou YHöner O. Physical activity interventions in the school setting: a systematic review. Psychol Sport Exerc. 2012;13(2):18696. doi:10.1016/j.psychsport.2011.11.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Department of Health. Does Your Child Get 60 Minutes of Physical Activity Every Day? Make Your Move: Sit Less Be Active for Life! Canberra, Australia: Department of Health; 2012.

    • Search Google Scholar
    • Export Citation
  • 13.

    Ding DLawson KDKolbe-Alexander TLet al. The economic burden of physical inactivity: a global analysis of major non-communicable diseases. Lancet. 2016;388(10051):131124. PubMed ID: 27475266 doi:10.1016/S0140-6736(16)30383-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Ekelund ULuan JSherar LBet al. Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA. 2012;307(7):70412. PubMed ID: 22337681 doi:10.1001/jama.2012.156

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Epstein LHPaluch RARoemmich JNBeecher MD. Family-based obesity treatment, then and now: twenty-five years of pediatric obesity treatment. Health Psychol. 2007;26(4):38191. PubMed ID: 17605557 doi:10.1037/0278-6133.26.4.381

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Epstein LHWrotniak BH. Future directions for pediatric obesity treatment. Obesity. 2010;18 Suppl 1:S812. PubMed ID: 20107466 doi:10.1038/oby.2009.425

  • 17.

    Evenson KRCatellier DJGill KOndrak KSMcMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):155765. PubMed ID: 18949660 doi:10.1080/02640410802334196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Fairclough SJBeighle AErwin HRidgers ND. School day segmented physical activity patterns of high and low active children. BMC Public Health. 2012;12:406. PubMed ID: 22672654 doi:10.1186/1471-2458-12-406

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Fairclough SJBoddy LMRidgers NDStratton G. Weight status associations with physical activity intensity and physical self-perceptions in 10- to 11-year-old children. Pediatr Exerc Sci. 2012;24(1):10012. PubMed ID: 22433256 doi:10.1123/pes.24.1.100

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Harris TKerry SMVictor CRet al. PACE-UP (Pedometer and consultation evaluation-UP)—a pedometer-based walking intervention with and without practice nurse support in primary care patients aged 45–75 years: study protocol for a randomised controlled trial. Trials. 2013;14:418. PubMed ID: 24304838 doi:10.1186/1745-6215-14-418

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    HM Government. Childhood Obesity: A Plan for Action. GOV.UK; 2016. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/546588/Childhood_obesity_2016__2__acc.pdf. Accessed December 17 2018.

    • Search Google Scholar
    • Export Citation
  • 22.

    Howard BWinkler EAHSethi Pet al. Associations of low- and high-intensity light activity with cardiometabolic biomarkers. Med Sci Sports Exerc. 2015;47(10):2093101. PubMed ID: 25668400 doi:10.1249/MSS.0000000000000631

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Janssen ILeblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Ach. 2010;7:40. PubMed ID: 20459784 doi:10.1186/1479-5868-7-40

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Johnson WDGeorge VT. Effect of regression to the mean in the presence of within-subject variability. Stat Med. 1991;10(8):1295302. PubMed ID: 1925160 doi:10.1002/sim.4780100812

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Lonsdale CRosenkranz RRPeralta LRBennie AFahey PLubans DR. A systematic review and meta-analysis of interventions designed to increase moderate-to-vigorous physical activity in school physical education lessons. Prev Med. 2013;56(2):15261. PubMed ID: 23246641 doi:10.1016/j.ypmed.2012.12.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Love REAdams Jvan Sluijs EMF. Equity effects of children’s physical activity interventions: a systematic scoping review. Int J Behav Nutr Phys Act. 2017;14(1):134. PubMed ID: 28969638 doi:10.1186/s12966-017-0586-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Lubans DRichards JHillman Cet al. Physical activity for cognitive and mental health in youth: a systematic review of mechanisms. Pediatrics. 2016;138(3):113. PubMed ID: 27542849 doi:10.1542/peds.2016-1642

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Lubans DRMorgan PJTudor-Locke C. A systematic review of studies using pedometers to promote physical activity among youth. Prev Med. 2009;48(4):30715. PubMed ID: 19249328 doi:10.1016/j.ypmed.2009.02.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Mansfield EDDucharme NKoski KG. Individual, social and environmental factors influencing physical activity levels and behaviours of multiethnic socio-economically disadvantaged urban mothers in Canada: a mixed methods approach. Int J Behav Nutr Phys Act. 2012;9:42. PubMed ID: 22500882 doi:10.1186/1479-5868-9-42

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Mattocks CLeary SNess Aet al. Calibration of an accelerometer during free-living activities in children. Int J Pediatr Obes. 2007;2(4):21826. PubMed ID: 17852552 doi:10.1080/17477160701408809

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Migueles JHCadenas-Sanchez CEkelund Uet al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. 2017;47(9):182145. PubMed ID: 28303543 doi:10.1007/s40279-017-0716-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Moore SAMcKay HAMacdonald Het al. Enhancing a somatic maturity prediction model. Med Sci Sports Exerc. 2015;47(8):175564. PubMed ID: 25423445 doi:10.1249/MSS.0000000000000588

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Grasten A. School-based physical activity interventions for children and youth: Keys for success. J Sp Health Sci. 2017;6:290291. doi:10.1016/j.jshs.2017.03.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Nettlefold LMcKay HAWarburton DERMcGuire KABredin SSDNaylor PJ. The challenge of low physical activity during the school day: at recess, lunch and in physical education. Br J Sports Med. 2011;45(10):8139. PubMed ID: 20215489 doi:10.1136/bjsm.2009.068072

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Norris EShelton NDunsmuir SDuke-Williams OStamatakis E. Physically active lessons as physical activity and educational interventions: a systematic review of methods and results. Prev Med. 2015;72:11625. PubMed ID: 25562754 doi:10.1016/j.ypmed.2014.12.027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Oliver MSchofield GMcEvoy E. An integrated curriculum approach to increasing habitual physical activity in children: a feasibility study. J Sch Health. 2006;76(2):749. PubMed ID: 16466470 doi:10.1111/j.1746-1561.2006.00071.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    ONS. Population Estimates for UK England and Wales Scotland and Northern Ireland. Newport, South Wales: Office for National Statistics; 2016.

    • Search Google Scholar
    • Export Citation
  • 38.

    Pate RRBrown WHPfeiffer KAet al. An intervention to increase physical activity in children: a randomized controlled trial with 4-year-olds in preschools. Am J Prev Med. 2016;51(1):1222. PubMed ID: 26803357 doi:10.1016/j.amepre.2015.12.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Quarmby WDaly-Smith AKime N. ‘You get some very archaic ideas of what teaching is. . . ’: primary school teachers’ perceptions of the barriers to physically active learning. Education. 2018:47:313.

    • Search Google Scholar
    • Export Citation
  • 40.

    Resaland GKAadland EMoe VFet al. Effects of physical activity on schoolchildren’s academic performance: the Active Smarter Kids (ASK) cluster-randomized controlled trial. Prev Med. 2016;91:3228. PubMed ID: 27612574 doi:10.1016/j.ypmed.2016.09.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Spear BABarlow SEErvin Cet al. Recommendations for treatment of child and adolescent overweight and obesity. Pediatrics. 2007;120 Suppl 4:S25488. doi:10.1542/peds.2007-2329F

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Taylor SLCurry WBKnowles ZRNoonan RJMcGrane BFairclough SJ. Predictors of segmented school day physical activity and sedentary time in children from a Northwest England low-income community. Int J Environ Res Public Health. 2017;14(5):534. doi:10.3390/ijerph14050534

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Tremblay MSBarnes JDGonzález SAet al. Global matrix 2.0: report card grades on the physical activity of children and youth comparing 38 countries. J Phys Act Health. 2016;13(11) Suppl 2 S34366. PubMed ID: 27848745 doi:10.1123/jpah.2016-0594

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Tremblay MSWarburton DERJanssen Iet al. New Canadian physical activity guidelines. Appl Physiol Nutr Metab. 2011;36(1):3646. PubMed ID: 21326376 doi:10.1139/H11-009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    U.S. Department of Health and Human Services. 2008 Physical Activity Guidelines for Americans. Be Active Healthy and Happy! Washington, DC: Centers for Disease Control and Prevention; 2008.

    • Search Google Scholar
    • Export Citation
  • 46.

    Watson ATimperio ABrown HBest KHesketh KD. Effect of classroom-based physical activity interventions on academic and physical activity outcomes: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2017;14(1):114. PubMed ID: 28841890 doi:10.1186/s12966-017-0569-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 29 29 29
Full Text Views 3 3 3
PDF Downloads 2 2 2
Altmetric Badge
PubMed
Google Scholar