Compliance and Practical Utility of Continuous Wearing of activPAL in Adolescents

in Pediatric Exercise Science
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $68.00

1 year subscription

USD $90.00

Student 2 year subscription

USD $129.00

2 year subscription

USD $168.00

Purpose: The aim of this study was to examine the factors that influence compliance and practical utility of a continuous wear protocols for activPAL among adolescents. Methods: Seven hundred and fifty-five (11–18 y; 50.6% girls) students wore the waterproof activPAL for 7 consecutive days. The effects of factors such as weather and practical strategies on compliance were assessed. Students were asked to note reasons for removing it in a log. After the 7-day period, students anonymously completed a practical utility questionnaire. Results: The final sample used to analyze compliance contained 588 available data points; 72.4% met the validity criteria, which were ≥4 valid days. Rainfall was inversely associated with total wear time, whereas using alcohol pads and cartoon stickers during the application were positively associated with total wear time. Sweating (25.2%) and skin irritation (39.0%) were the most reasons for 290 removal episodes by 235 students. The 131 questionnaires showed that 80.1% regarded the continuous wear period as too long and encountered problems, and 55% would rather not wear it again. Conclusion: Rainy weather affected girls’ compliance with the continuous wear protocol for activPAL. Skin irritation and sweat-induced inadvertent drops caused removal. Future studies should investigate more user-friendly protocols.

Shi, Yu, Sit, and Wong are with the Department of Sports Science and Physical Education, The Chinese University of Hong Kong, New Territories, Hong Kong. Huang is with the Department of Sport and Physical Education, Hong Kong Baptist University, Kowloon, Hong Kong. Sheridan is with the School of Public Health, The University of Hong Kong, Hong Kong Island, Hong Kong.

Wong (hsswong@cuhk.edu.hk) is corresponding author.
Pediatric Exercise Science
Article Sections
References
  • 1.

    Berendsen BAHendriks MRMeijer KPlasqui GSchaper NCSavelberg HH. Which activity monitor to use? Validity, reproducibility and user friendliness of three activity monitors. BMC Public Health. 2014;14:749. PubMed ID: 25059233 doi:10.1186/1471-2458-14-749

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Busschaert CDe Bourdeaudhuij IVan Holle VChastin SFCardon GDe Cocker K. Reliability and validity of three questionnaires measuring context-specific sedentary behaviour and associated correlates in adolescents, adults and older adults. Int J Behav Nutr Phys Act. 2015;12:117. PubMed ID: 26381488 doi:10.1186/s12966-015-0277-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Clark BKWinkler EHealy GNet al. Adults’ past-day recall of sedentary time: reliability, validity, and responsiveness. Med Sci Sports Exerc. 2013;45(6):1198207. PubMed ID: 23274615 doi:10.1249/MSS.0b013e3182837f57

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Davies GReilly JMcGowan ADall PGranat MPaton J. Validity, practical utility, and reliability of the activPAL in preschool children. Med Sci Sports Exerc. 2012;44(4):7618. PubMed ID: 21983077 doi:10.1249/MSS.0b013e31823b1dc7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    De Decker EDe Craemer MSantos-Lozano AVan Cauwenberghe EDe Bourdeaudhuij ICardon G. Validity of the ActivPAL and the ActiGraph monitors in preschoolers. Med Sci Sports Exerc. 2013;45(10):200211. PubMed ID: 23524516 doi:10.1249/MSS.0b013e318292c575

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Dowd KPHarrington DMBourke AKNelson JDonnelly AE. The measurement of sedentary patterns and behaviors using the activPAL Professional physical activity monitor. Physiol Meas. 2012;33(11):188799. PubMed ID: 23111150 doi:10.1088/0967-3334/33/11/1887

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Dowd KPHarrington DMHannigan ADonnelly AE. Light-intensity physical activity is associated with adiposity in adolescent females. Med Sci Sports Exerc. 2014;46(12):2295300. PubMed ID: 24797308 doi:10.1249/MSS.0000000000000357

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Edwardson CLWinkler EABodicoat DHet al. Considerations when using the activPAL monitor in field-based research with adult populations. J Sport Health Sci. 2017;6(2):16278. PubMed ID: 30356601 doi:10.1016/j.jshs.2016.02.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Grant PMRyan CGTigbe WWGranat MH. The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. Br J Sports Med. 2006;40(12):9927. PubMed ID: 16980531 doi:10.1136/bjsm.2006.030262

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Harrington DMDowd KPBourke AKDonnelly AE. Cross-sectional analysis of levels and patterns of objectively measured sedentary time in adolescent females. Int J Behav Nutr Phys Act. 2011;8:120. PubMed ID: 22035260 doi:10.1186/1479-5868-8-120

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Hong Kong Observatory. Daily Weather Summary and Radiation Level [Internet]. 2000 [cited 2017 Nov 1]. Available from: http://www.hko.gov.hk/wxinfo/dailywx/dailywx.shtml.

    • Export Citation
  • 12.

    Kim YBarry VWKang M. Validation of the ActiGraph GT3X and activPAL accelerometers for the assessment of sedentary behavior. Meas Phys Educ Exerc Sci. 2015;19(3):12537. doi:10.1080/1091367X.2015.1054390

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Kozey-Keadle SLibertine ALyden KStaudenmayer JFreedson PS. Validation of wearable monitors for assessing sedentary behavior. Med Sci Sports Exerc. 2011;43(8):15617. PubMed ID: 21233777 doi:10.1249/MSS.0b013e31820ce174

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Maddocks MByrne AJohnson CDWilson RHFearon KCWilcock A. Physical activity level as an outcome measure for use in cancer cachexia trials: a feasibility study. Support Care Cancer. 2010;18(12):153944. PubMed ID: 19956982 doi:10.1007/s00520-009-0776-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Matthews CEHagströmer MPober DMBowles HR. Best practices for using physical activity monitors in population-based research. Med Sci Sports Exerc. 2012;44(1) Suppl 1:S6876. PubMed ID: 22157777 doi:10.1249/MSS.0b013e3182399e5b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    McCrorie PRDuncan EGranat MHStansfield BW. Seasonal variation in the distribution of daily stepping in 11–13 year old school children. Int J Exerc Sci. 2015;8(4):5. PubMed ID: 26550098

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Meffert JJ. Environmental skin diseases and the impact of common dermatoses on medical readiness. Dermatol Clin. 1999;17(1):117. PubMed ID: 9986992 doi:10.1016/S0733-8635(05)70066-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Quante MKaplan ERRueschman MCailler MBuxton OMRedline S. Practical considerations in using accelerometers to assess physical activity, sedentary behavior, and sleep. Sleep Health. 2015;1(4):27584. PubMed ID: 29073403 doi:10.1016/j.sleh.2015.09.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Reid NEakin EHenwood Tet al. Objectively measured activity patterns among adults in residential aged care. Int J Environ Res Public Health. 2013;10(12):678398. PubMed ID: 24304508 doi:10.3390/ijerph10126783

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Schneller MBBentsen PNielsen Get al. Measuring children’s physical activity: compliance using skin-taped accelerometers. Med Sci Sports Exerc. 2017;49(6):12619. PubMed ID: 28181981 doi:10.1249/MSS.0000000000001222

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Stanton RGuertler DDuncan MJVandelanotte C. Validation of a pouch-mounted activPAL3 accelerometer. Gait Posture. 2014;40(4):68893. PubMed ID: 25161009 doi:10.1016/j.gaitpost.2014.07.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Steeves JABowles HRMcClain JJet al. Ability of thigh-worn ActiGraph and activPAL monitors to classify posture and motion. Med Sci Sports Exerc. 2015;47(5):95259. PubMed ID: 25202847 doi:10.1249/MSS.0000000000000497

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Trost SGPate RRFreedson PSSallis JFTaylor WC. Using objective physical activity measures with youth: how many days of monitoring are needed? Med Sci Sports Exerc. 2000;32(2):42631. PubMed ID: 10694127 doi:10.1097/00005768-200002000-00025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    van der Velde JHSavelberg HHvan der Berg JDet al. Sedentary behavior is only marginally associated with physical function in adults aged 40–75 years—the Maastricht Study. Front Physiol. 2017;8:242. PubMed ID: 28487660 doi:10.3389/fphys.2017.00242

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 39 39 39
Full Text Views 3 3 3
PDF Downloads 3 3 3
Altmetric Badge
PubMed
Google Scholar