We are updating our website on Thursday, December 2 from 9 AM – 5 PM EST. During this time, users may experience some disruptions while using the site. We apologize for the inconvenience.

Interpreting Youth Aerobic Fitness: Promoting Evidence-Based Discussion–A Response to Dotan (2019)

in Pediatric Exercise Science
View More View Less
  • 1 University of Exeter
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $70.00

1 year online subscription

USD  $94.00

Student 2 year online subscription

USD  $134.00

2 year online subscription

USD  $178.00

The authors are with the Children’s Health and Exercise Research Centre, University of Exeter, Exeter, United Kingdom.

Armstrong (N.Armstrong@exeter.ac.uk) is corresponding author.
  • 1.

    Altman DG. The scandal of poor medical research. BMJ. 1994;308:2834. PubMed ID: 8124111 doi:10.1136/bmj.308.6924.283

  • 2.

    Armstrong N, Welsman J. Development of peak oxygen uptake from 11-16 years determined using both treadmill and cycle ergometry. Eur J Appl Physiol. 2019;119:80112. PubMed ID: 30627827 doi:10.1007/s00421-019-04071-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Armstrong N, Welsman J. Fact and fiction in youth cardiorespiratory fitness. Int J Phys Educ, Fit Sport. 2019;8(2):813. doi:10.26524/ijpefs1922

  • 4.

    Armstrong N, Welsman J. Myths, misconceptions and the 20 metre shuttle run. Phys Educ Matters. 2019;14. In press.

  • 5.

    Armstrong N, Welsman J. Sex-specific longitudinal modeling of short-term power in 11-18 year-olds. Med Sci Sport Exerc. 2019;51:105563. doi:10.1249/MSS.0000000000001864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Armstrong N, Welsman J. Sex-specific longitudinal modeling of youth peak oxygen uptake. Pediatr Exerc Sci. 2019;31:20412. PubMed ID: 30449237 doi:10.1123/pes.2018-0175.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Armstrong N, Welsman J. Twenty-metre shuttle run: (mis)representation, (mis)interpretation and (mis)use. Br J Sports Med. 2019. doi:10.1136/bjsports-2018-100082

    • Search Google Scholar
    • Export Citation
  • 8.

    Armstrong N, Welsman J, Bloxham SR. Development of 11- to 16-year-olds’ short-term power output determined using both treadmill running and cycle ergometry. Eur J Appl Physiol. 2019;119:156580. doi:10.1007/s00421-018-3989-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Armstrong N, Welsman JR. Cardiovascular responses to submaximal running in 11 to 13 year olds. Acta Paediatr. 2002;91:12531. PubMed ID: 11951996 doi:10.1111/j.1651-2227.2002.tb01682.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Armstrong N, Welsman JR, Kirby BJ. Longitudinal changes in 11-13-year-olds’ physical activity. Acta Paediatr. 2000;89:77580. PubMed ID: 10943956 doi:10.1111/j.1651-2227.2000.tb00384.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Armstrong N, Welsman JR, Nevill AM, Kirby BJ. Modeling growth and maturation changes in peak oxygen uptake in 11-13-year olds. J Appl Physiol. 1999;87:22306. PubMed ID: 10601172 doi:10.1152/jappl.1999.87.6.2230

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Blais S, Blanchard J, Dallaire F. An alternative to ratio scaling for the interpretation of aerobic fitness in children. Pediatr Exerc Sci. 2019;31:2545. PubMed ID: 30890018 doi:10.1123/pes.2019-0008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    De Ste Croix MB, Armstrong N, Welsman JR, Sharpe P. Longitudinal changes in isokinetic leg strength in 10-14-year-olds. Ann Hum Biol. 2002;29:5062. PubMed ID: 11826879 doi:10.1080/03014460110057981

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Dotan R. Interpreting the persistence of the VO2 ratio-scaling fallacy. Pediatr Exerc Sci. 2019;31(3). doi:10.1123/pes.2019-0051

  • 15.

    Falk B, Dotan R. Measurement and interpretation of maximal aerobic power in children. Pediatr Exerc Sci. 2019;31:14451. PubMed ID: 30567470 doi:10.1123/pes.2018-0191

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Janz KF, Burns TL, Witt JD, Mahoney LT. Longitudinal analysis of scaling VO2 for differences in body size during puberty: the Muscatine study. Med Sci Sports Exerc. 1998;30:143644. PubMed ID: 9741614

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Nevill AM. Evidence of an increasing proportion of leg muscle mass to body mass in male adolescents and its implications on performance. J Sports Sci. 1994;12:163. doi:10.1080/02640419408732165

    • Search Google Scholar
    • Export Citation
  • 18.

    Nevill AM. The appropriate use of scaling techniques in exercise physiology. Pediatr Exerc Sci. 1997;9:2958. doi:10.1123/pes.9.4.295

  • 19.

    Nevill AM, Bate S, Holder RL. Modeling physiological and anthropometrical variables known to vary with body size and other confounding variables. Yrbk Phys Anthrop. 2005;48:14153. doi:10.1002/ajpa.20356

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Nevill AM, Holder RL, Baxter-Jones A, Round JM, Jones DA. Modelling developmental changes in strength and aerobic power in children. J Appl Physiol. 1998;84:96370. PubMed ID: 9480958 doi:10.1152/jappl.1998.84.3.963

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Rasbash J, Steele F, Browne WJ, Goldstein H. A user’s guide to MLwiN Version 3.02. Bristol, UK: University of Bristol Centre for Multilevel Modelling; 2018.

    • Search Google Scholar
    • Export Citation
  • 22.

    Rowland TW. Children’s Exercise Physiology. Champaign, IL: Human Kinetics; 2005:18.

  • 23.

    Santos AMC, Armstrong N, De Ste Croix MBA, Sharpe P, Welsman JR. Optimal peak power in relation to age, body size, gender, and thigh muscle volume. Pediatr Exerc Sci. 2003; 15:40618. doi:10.1123/pes.15.4.406

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Schmidt-Nielsen K. Scaling: Why is Animal Size so Important? Cambridge, UK: Cambridge University Press; 1984:1241.

  • 25.

    Slaughter MH, Loham TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, Bemben DA. Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 1988; 60:70923. PubMed ID: 3224965

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Welsman J. Reflecting on field performance tests of pediatric aerobic fitness: after 30 years it really is time to move on. Pediatr Exerc Sci. 2019;31:1913. PubMed ID: 30943840 doi:10.1123/pes.2019-0034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Welsman J, Armstrong N. Interpreting aerobic fitness in youth: alternatives to ratio scaling–a response to Blais et al (2019). Pediatr Exerc Sci. 2019;31:2567. PubMed ID: 30916617 doi:10.1123/pes.2019-0026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Welsman J, Armstrong N. Interpreting aerobic fitness in youth: the fallacy of ratio scaling. Pediatr Exerc Sci. 2019;31:18490. PubMed ID: 30332906 doi:10.1123/pes.2018-0141

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Welsman J, Armstrong N. Interpreting cardiorespiratory fitness in young clinical populations: folklore and fallacy. JAMA Pediatr. 2019;E1E2. doi:10.1001/jamapediatrics.2019.1485

    • Search Google Scholar
    • Export Citation
  • 30.

    Welsman JR, Armstrong N. Interpreting exercise performance data in relation to body size. In: Armstrong N, van Mechelen W, eds. Paediatric Exercise Science and Medicine. 2nd ed. Oxford, UK: Oxford University Press; 2008:1321.

    • Search Google Scholar
    • Export Citation
  • 31.

    Welsman JR, Armstrong N. Interpreting performance in relation to body size. In: Armstrong N, ed. Paediatric Exercise Physiology. Edinburgh, UK: Churchill Livingstone; 2007:2746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Welsman JR, Armstrong N. Scaling for size: relevance to understanding the effects of growth on performance. In: Hebestreit H, Bar-Or O, eds. The Young Athlete. Oxford, UK: Blackwell; 2008:5062.

    • Search Google Scholar
    • Export Citation
  • 33.

    Welsman JR, Armstrong N. Statistical techniques for interpreting body size–related exercise performance during growth. Pediatr Exerc Sci. 2000;12:11227. doi:10.1123/pes.12.2.112

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Welsman JR, Armstrong N, Kirby BJ, Nevill AM, Winter EM. Scaling peak VO2 for differences in body size. Med Sci Sports Exerc. 1996;28:25965. PubMed ID: 8775163 doi:10.1097/00005768-199602000-00016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Williams JR, Armstrong N, Winter EM, Crichton N. Changes in peak oxygen uptake with age and sexual maturation in boys: physiological fact or statistical anomaly? In: Coudert J, van Praagh E, eds. Children and Exercise XVI. Paris, France: Masson; 1992:357.

    • Search Google Scholar
    • Export Citation
  • 36.

    Winter EM. Scaling: partitioning out differences in size. Pediatr Exerc Sci. 1992;4:296301. doi:10.1123/pes.4.4.296

  • 37.

    Winter EM. Importance and principles of scaling for size differences. In: Bar-Or O, ed. The Child and Adolescent Athlete. Oxford, UK: Blackwell; 1996:6739.

    • Search Google Scholar
    • Export Citation
  • 38.

    Winter EM, Nevill AM. Scaling: adjusting for differences in body size. In: Eston R, Reilly T, eds. Kinanthropometry and Exercise Physiology Laboratory Manual. 3rd ed. Oxford, UK :Routledge; 2009:30020.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 878 417 35
Full Text Views 35 2 0
PDF Downloads 13 0 0