Interpreting Youth Aerobic Fitness: Promoting Evidence-Based Discussion–A Response to Dotan (2019)

in Pediatric Exercise Science
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $68.00

1 year subscription

USD  $90.00

Student 2 year subscription

USD  $129.00

2 year subscription

USD  $168.00

If the inline PDF is not rendering correctly, you can download the PDF file here.

The authors are with the Children’s Health and Exercise Research Centre, University of Exeter, Exeter, United Kingdom.

Armstrong (N.Armstrong@exeter.ac.uk) is corresponding author.
  • 1.

    Altman DG. The scandal of poor medical research. BMJ. 1994;308:283–4. PubMed ID: 8124111 doi:10.1136/bmj.308.6924.283

  • 2.

    Armstrong N, Welsman J. Development of peak oxygen uptake from 11-16 years determined using both treadmill and cycle ergometry. Eur J Appl Physiol. 2019;119:801–12. PubMed ID: 30627827 doi:10.1007/s00421-019-04071-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Armstrong N, Welsman J. Fact and fiction in youth cardiorespiratory fitness. Int J Phys Educ, Fit Sport. 2019;8(2):8–13. doi:10.26524/ijpefs1922

  • 4.

    Armstrong N, Welsman J. Myths, misconceptions and the 20 metre shuttle run. Phys Educ Matters. 2019;14. In press.

  • 5.

    Armstrong N, Welsman J. Sex-specific longitudinal modeling of short-term power in 11-18 year-olds. Med Sci Sport Exerc. 2019;51:1055–63. doi:10.1249/MSS.0000000000001864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Armstrong N, Welsman J. Sex-specific longitudinal modeling of youth peak oxygen uptake. Pediatr Exerc Sci. 2019;31:204–12. PubMed ID: 30449237 doi:10.1123/pes.2018-0175.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Armstrong N, Welsman J. Twenty-metre shuttle run: (mis)representation, (mis)interpretation and (mis)use. Br J Sports Med. 2019. doi:10.1136/bjsports-2018-100082

    • Search Google Scholar
    • Export Citation
  • 8.

    Armstrong N, Welsman J, Bloxham SR. Development of 11- to 16-year-olds’ short-term power output determined using both treadmill running and cycle ergometry. Eur J Appl Physiol. 2019;119:1565–80. doi:10.1007/s00421-018-3989-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Armstrong N, Welsman JR. Cardiovascular responses to submaximal running in 11 to 13 year olds. Acta Paediatr. 2002;91:125–31. PubMed ID: 11951996 doi:10.1111/j.1651-2227.2002.tb01682.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Armstrong N, Welsman JR, Kirby BJ. Longitudinal changes in 11-13-year-olds’ physical activity. Acta Paediatr. 2000;89:775–80. PubMed ID: 10943956 doi:10.1111/j.1651-2227.2000.tb00384.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Armstrong N, Welsman JR, Nevill AM, Kirby BJ. Modeling growth and maturation changes in peak oxygen uptake in 11-13-year olds. J Appl Physiol. 1999;87:2230–6. PubMed ID: 10601172 doi:10.1152/jappl.1999.87.6.2230

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Blais S, Blanchard J, Dallaire F. An alternative to ratio scaling for the interpretation of aerobic fitness in children. Pediatr Exerc Sci. 2019;31:254–5. PubMed ID: 30890018 doi:10.1123/pes.2019-0008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    De Ste Croix MB, Armstrong N, Welsman JR, Sharpe P. Longitudinal changes in isokinetic leg strength in 10-14-year-olds. Ann Hum Biol. 2002;29:50–62. PubMed ID: 11826879 doi:10.1080/03014460110057981

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Dotan R. Interpreting the persistence of the VO2 ratio-scaling fallacy. Pediatr Exerc Sci. 2019;31(3). doi:10.1123/pes.2019-0051

  • 15.

    Falk B, Dotan R. Measurement and interpretation of maximal aerobic power in children. Pediatr Exerc Sci. 2019;31:144–51. PubMed ID: 30567470 doi:10.1123/pes.2018-0191

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Janz KF, Burns TL, Witt JD, Mahoney LT. Longitudinal analysis of scaling VO2 for differences in body size during puberty: the Muscatine study. Med Sci Sports Exerc. 1998;30:1436–44. PubMed ID: 9741614

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Nevill AM. Evidence of an increasing proportion of leg muscle mass to body mass in male adolescents and its implications on performance. J Sports Sci. 1994;12:163. doi:10.1080/02640419408732165

    • Search Google Scholar
    • Export Citation
  • 18.

    Nevill AM. The appropriate use of scaling techniques in exercise physiology. Pediatr Exerc Sci. 1997;9:295–8. doi:10.1123/pes.9.4.295

  • 19.

    Nevill AM, Bate S, Holder RL. Modeling physiological and anthropometrical variables known to vary with body size and other confounding variables. Yrbk Phys Anthrop. 2005;48:141–53. doi:10.1002/ajpa.20356

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Nevill AM, Holder RL, Baxter-Jones A, Round JM, Jones DA. Modelling developmental changes in strength and aerobic power in children. J Appl Physiol. 1998;84:963–70. PubMed ID: 9480958 doi:10.1152/jappl.1998.84.3.963

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Rasbash J, Steele F, Browne WJ, Goldstein H. A user’s guide to MLwiN Version 3.02. Bristol, UK: University of Bristol Centre for Multilevel Modelling; 2018.

    • Search Google Scholar
    • Export Citation
  • 22.

    Rowland TW. Children’s Exercise Physiology. Champaign, IL: Human Kinetics; 2005:18.

  • 23.

    Santos AMC, Armstrong N, De Ste Croix MBA, Sharpe P, Welsman JR. Optimal peak power in relation to age, body size, gender, and thigh muscle volume. Pediatr Exerc Sci. 2003; 15:406–18. doi:10.1123/pes.15.4.406

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Schmidt-Nielsen K. Scaling: Why is Animal Size so Important? Cambridge, UK: Cambridge University Press; 1984:1–241.

  • 25.

    Slaughter MH, Loham TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, Bemben DA. Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 1988; 60:709–23. PubMed ID: 3224965

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Welsman J. Reflecting on field performance tests of pediatric aerobic fitness: after 30 years it really is time to move on. Pediatr Exerc Sci. 2019;31:191–3. PubMed ID: 30943840 doi:10.1123/pes.2019-0034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Welsman J, Armstrong N. Interpreting aerobic fitness in youth: alternatives to ratio scaling–a response to Blais et al (2019). Pediatr Exerc Sci. 2019;31:256–7. PubMed ID: 30916617 doi:10.1123/pes.2019-0026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Welsman J, Armstrong N. Interpreting aerobic fitness in youth: the fallacy of ratio scaling. Pediatr Exerc Sci. 2019;31:184–90. PubMed ID: 30332906 doi:10.1123/pes.2018-0141

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Welsman J, Armstrong N. Interpreting cardiorespiratory fitness in young clinical populations: folklore and fallacy. JAMA Pediatr. 2019;E1–E2. doi:10.1001/jamapediatrics.2019.1485

    • Search Google Scholar
    • Export Citation
  • 30.

    Welsman JR, Armstrong N. Interpreting exercise performance data in relation to body size. In: Armstrong N, van Mechelen W, eds. Paediatric Exercise Science and Medicine. 2nd ed. Oxford, UK: Oxford University Press; 2008:13–21.

    • Search Google Scholar
    • Export Citation
  • 31.

    Welsman JR, Armstrong N. Interpreting performance in relation to body size. In: Armstrong N, ed. Paediatric Exercise Physiology. Edinburgh, UK: Churchill Livingstone; 2007:27–46.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Welsman JR, Armstrong N. Scaling for size: relevance to understanding the effects of growth on performance. In: Hebestreit H, Bar-Or O, eds. The Young Athlete. Oxford, UK: Blackwell; 2008:50–62.

    • Search Google Scholar
    • Export Citation
  • 33.

    Welsman JR, Armstrong N. Statistical techniques for interpreting body size–related exercise performance during growth. Pediatr Exerc Sci. 2000;12:112–27. doi:10.1123/pes.12.2.112

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Welsman JR, Armstrong N, Kirby BJ, Nevill AM, Winter EM. Scaling peak VO2 for differences in body size. Med Sci Sports Exerc. 1996;28:259–65. PubMed ID: 8775163 doi:10.1097/00005768-199602000-00016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Williams JR, Armstrong N, Winter EM, Crichton N. Changes in peak oxygen uptake with age and sexual maturation in boys: physiological fact or statistical anomaly? In: Coudert J, van Praagh E, eds. Children and Exercise XVI. Paris, France: Masson; 1992:35–7.

    • Search Google Scholar
    • Export Citation
  • 36.

    Winter EM. Scaling: partitioning out differences in size. Pediatr Exerc Sci. 1992;4:296–301. doi:10.1123/pes.4.4.296

  • 37.

    Winter EM. Importance and principles of scaling for size differences. In: Bar-Or O, ed. The Child and Adolescent Athlete. Oxford, UK: Blackwell; 1996:673–9.

    • Search Google Scholar
    • Export Citation
  • 38.

    Winter EM, Nevill AM. Scaling: adjusting for differences in body size. In: Eston R, Reilly T, eds. Kinanthropometry and Exercise Physiology Laboratory Manual. 3rd ed. Oxford, UK: Routledge; 2009:300–20.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 301 301 9
Full Text Views 31 31 1
PDF Downloads 12 12 1