Commentary on the Article “Interpreting Aerobic Fitness in Youth: The Fallacy of Ratio Scaling”—Is Body Mass the Best Body Size Descriptor to Normalize Aerobic Fitness in the Pediatric Population?

in Pediatric Exercise Science
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $68.00

1 year subscription

USD $90.00

Student 2 year subscription

USD $129.00

2 year subscription

USD $168.00

The authors are with Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Cunha (giovani.cunha@ufrgs.br) is corresponding author.
Pediatric Exercise Science
References
  • 1.

    Armstrong NWelsman JR. Assessment and interpretation of aerobic fitness in children and adolescents. Exerc Sport Sci Rev. 1994;22:43576. PubMed ID: 7925551 doi:10.1249/00003677-199401000-00016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Armstrong NWelsman JR. Development of aerobic fitness during childhood and adolescence. Pediatr Exerc Sci. 2000;12:12849. doi:10.1123/pes.12.2.128

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Armstrong NWelsman JR. Peak oxygen uptake in relation to growth and maturation in 11- to 17-year-old humans. Eur J Appl Physiol. 2001;85(6):54651. PubMed ID: 11718283 doi:10.1007/s004210100485

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Armstrong NWelsman JRKirby BJ. Peak oxygen uptake and maturation in 12-yr olds. Med Sci Sports Exerc. 1998;30(1):1659. PubMed ID: 9475659 doi:10.1097/00005768-199801000-00023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Armstrong NWelsman JRNevill AMKirby BJ. Modeling growth and maturation changes in peak oxygen uptake in 11-13 yr olds. J Appl Physiol. 1999;87(6):22306. PubMed ID: 10601172 doi:10.1152/jappl.1999.87.6.2230

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Baker JSDavies B. Quantification of active muscle mass during experimental exercise. J Appl Physiol. 2006;101(5):1534. author reply 1535. PubMed ID: 16825520 doi:10.1152/japplphysiol.00699.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Cunha GLorenzi TSapata KLopes ALGaya ACOliveira A. Effect of biological maturation on maximal oxygen uptake and ventilatory thresholds in soccer players: an allometric approach. J Sports Sci. 2011;29(10):102939. PubMed ID: 21590578 doi:10.1080/02640414.2011.570775

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Cunha GDSVaz MAHerzog WGeremia JMLeites GTReischak-Oliveira A. Maturity status effects on torque and muscle architecture of young soccer players. J Sports Sci. 2019;21:110. doi:10.1080/02640414.2019.1589908

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Cunha GSCumming SPValente-Dos-Santos Jet al. Interrelationships among jumping power, sprinting power and pubertal status after controlling for size in young male soccer players. Percept Mot Skills. 2017;124(2):32950. PubMed ID: 28361651 doi:10.1177/0031512516686720

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Cunha GSVaz MAGeremia JMLeites GTBaptista RRLopes ALReischak-Oliveira Á. Maturity status does not exert effects on aerobic fitness in soccer players after appropriate normalization for body size. Pediatr Exerc Sci. 2016;28(3):45665. PubMed ID: 26694739 doi:10.1123/pes.2015-0133

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Dencker MBugge AHermansen BFroberg KAndersen LB. Aerobic fitness in prepubertal children according to level of body fat. Acta Paediatr. 2010;99(12):185460. PubMed ID: 20670311 doi:10.1111/j.1651-2227.2010.01952.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Doncaster GIga JUnnithan V. Assessing differences in cardiorespiratory fitness with respect to maturity status in highly trained youth soccer players. Pediatr Exerc Sci. 2018;30(2):21628. PubMed ID: 29276855 doi:10.1123/pes.2017-0185

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Graves LEBatterham AMFoweather Let al. Scaling of peak oxygen uptake in children: a comparison of three body size index models. Med Sci Sports Exerc. 2013;45(12):23415. PubMed ID: 23698249 doi:10.1249/MSS.0b013e31829bfa79

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Leites GTSehl PLCunha GDDetoni Filho AMeyer F. Responses of obese and lean girls exercising under heat and thermoneutral conditions. J Pediatr. 2013;162(5):105460. PubMed ID: 23219448 doi:10.1016/j.jpeds.2012.10.047

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Loftin MSothern MAbe TBonis M. Expression of VO2peak in children and youth, with special reference to allometric scaling. Sports Med. 2016;46(10):145160. PubMed ID: 27139725 doi:10.1007/s40279-016-0536-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    McMurray RGHosick PABugge A. Importance of proper scaling of aerobic power when relating to cardiometabolic risk factors in children. Ann Hum Biol. 2011;38(5):64754. PubMed ID: 21749316 doi:10.3109/03014460.2011.598561

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Nes BMOsthus IBWelde BAspenes STWisloff U. Peak oxygen uptake and physical activity in 13- to 18-year-olds: the Young-HUNT study. Med Sci Sports Exerc. 2013;45(2):30413. PubMed ID: 22968311 doi:10.1249/MSS.0b013e318271ae4d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Nevill AMHolder RLBaxter-Jones ARound JMJones DA. Modeling developmental changes in strength and aerobic power in children. J Appl Physiol. 1998;84(3):96370. PubMed ID: 9480958 doi:10.1152/jappl.1998.84.3.963

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Nevill AMMarkovic GVucetic VHolder R. Can greater muscularity in larger individuals resolve the 3/4 power-law controversy when modelxling maximum oxygen uptake? Ann Hum Biol. 2004;31(4):43645. PubMed ID: 15513694 doi:10.1080/03014460410001723996

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Teixeira ASGuglielmo LGAFernandes-da-Silva Jet al. Skeletal maturity and oxygen uptake in youth soccer controlling for concurrent size descriptors. PLoS ONE. 2018;13(10):e0205976. PubMed ID: 30335836 doi:10.1371/journal.pone.0205976

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Tolfrey KBarker AThom JMMorse CINarici MVBatterham AM. Scaling of maximal oxygen uptake by lower leg muscle volume in boys and men. J Appl Physiol. 2006;100(6):18516. PubMed ID: 16484361 doi:10.1152/japplphysiol.01213.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Tomlinson OWBarker ARChubbock LVStevens DSaynor ZLOades PJWilliams CA. Analysis of oxygen uptake efficiency parameters in young people with cystic fibrosis. Eur J Appl Physiol. 2018;118(10):205563. PubMed ID: 30003381 doi:10.1007/s00421-018-3926-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Tomlinson OWBarker AROades PJWilliams CA. Scaling the oxygen uptake efficiency slope for body size in cystic fibrosis. Med Sci Sports Exerc. 2017;49(10):19806. PubMed ID: 28489686 doi:10.1249/MSS.0000000000001314

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Valente-Dos-Santos JCoelho-E-Silva MJTavares OMet al. Allometric modelling of peak oxygen uptake in male soccer players of 8-18 years of age. Ann Hum Biol. 2015;42(2):12533. PubMed ID: 25296010 doi:10.3109/03014460.2014.932007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Valente-Dos-Santos JSherar LCoelho-E-Silva MJet al. Allometric scaling of peak oxygen uptake in male roller hockey players under 17 years old. Appl Physiol Nutr Metab. 2013;38(4):3905. PubMed ID: 23713531 doi:10.1139/apnm-2012-0178

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Welsman JArmstrong N. Interpreting aerobic fitness in youth: the fallacy of ratio scaling. Pediatr Exerc Sci. 2019;31(2):18490. PubMed ID: 30332906 doi:10.1123/pes.2018-0141

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Welsman JRArmstrong N. Statistical techniques for interpreting body size-related exercise performance during growth. Pediatr Exerc Sci. 2000;12(2):11227. doi:10.1123/pes.12.2.112

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Welsman JRArmstrong NKirby BJWinsley RJParsons GSharpe P. Exercise performance and magnetic resonance imaging-determined thigh muscle volume in children. Eur J Appl Physiol Occup Physiol. 1997;76(1):927. PubMed ID: 9243176 doi:10.1007/s004210050218

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Welsman JRArmstrong NNevill AMWinter EMKirby BJ. Scaling peak VO2 for differences in body size. Med Sci Sports Exerc. 1996;28(2):25965. PubMed ID: 8775163 doi:10.1097/00005768-199602000-00016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 30 30 30
Full Text Views 5 5 5
PDF Downloads 3 3 3
Altmetric Badge
PubMed
Google Scholar