Pediatric Traumatic Brain Injury and Exercise Medicine: A Narrative Review

in Pediatric Exercise Science
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $68.00

1 year subscription

USD  $90.00

Student 2 year subscription

USD  $129.00

2 year subscription

USD  $168.00

The multidisciplinary field of pediatric traumatic brain injury (TBI) and exercise medicine is of growing importance. There is active study into the diagnostic and therapeutic potential of exercise in pediatric TBI as well as the effects of TBI on postinjury fitness. With the evidence-based growing, a literature review can help establish the state of the science and inform future research. Therefore, the authors performed a narrative review (based on a search of 6 health sciences databases) to summarize evidence on pediatric TBI and cardiorespiratory fitness, muscular fitness and neuromotor control, and obesity. To date, studies related to cardiorespiratory fitness have centered on exercise tolerance and readiness to return to play, and indicate that protracted rest may not facilitate symptom recovery; this suggests a role for exercise in concussion management. Furthermore, strength and gait may be impaired following pediatric brain injury, and interventions designed to train these impairments may lead to their improvement. Pediatric brain injury can also lead to changes in body composition (which may be related to poorer cognitive recovery), but additional research is required to better understand such associations. This narrative review of pediatric TBI and exercise medicine can serve as a reference for researchers and clinicians alike.

The authors are with the Child Health & Exercise Medicine Program, Department of Pediatrics, McMaster University, Hamilton, ON, Canada. Sharma is also with the Department of Medical Sciences, McMaster University, Hamilton, ON, Canada.

Timmons (timmonbw@mcmaster.ca) is corresponding author.
  • 1.

    Amonette WE, Mossberg KA. Ventilatory anaerobic thresholds of individuals recovering from traumatic brain injury compared to non-injured controls. J Head Trauma Rehabil. 2013;28(5):E13. PubMed ID: 22935575 doi:10.1097/HTR.0b013e31826463a1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Asken BM, Snyder AR, Clugston JR, Gaynor LS, Sullan MJ, Bauer RM. Concussion-like symptom reporting in non-concussed collegiate athletes. Arch Clin Neuropsychol. 2017;32(8):963–71. PubMed ID: 28334382 doi:10.1093/arclin/acx018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Babikian T, Merkley T, Savage RC, Giza CC, Levin H. Chronic aspects of pediatric traumatic brain injury: review of the literature. J Neurotrauma. 2015;32(23):1849–60. PubMed ID: 26414654 doi:10.1089/neu.2015.3971

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Baque E, Barber L, Sakzewski L, Boyd RN. Reproducibility in measuring physical activity in children and adolescents with an acquired brain injury. Brain Inj. 2016;30(13–14):1692–8. PubMed ID: 27996328 doi:10.1080/02699052.2016.1201594

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Biswas AK, Scott WA, Sommerauer JF, Luckett PM. Heart rate variability after acute traumatic brain injury in children. Crit Care Med. 2000;28(12):3907–12. PubMed ID: 11153634 doi:10.1097/00003246-200012000-00030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Blake TA, McKay CD, Meeuwisse WH, Emery CA. The impact of concussion on cardiac autonomic function: a systematic review. Brain Inj. 2016;30(2):132–45. PubMed ID: 26671602 doi:10.3109/02699052.2015.1093659

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bondanelli M, De Marinis L, Ambrosio MR, et al. Occurrence of pituitary dysfunction following traumatic brain injury. J Neurotrauma. 2004;21(6):685–96. PubMed ID: 15253797 doi:10.1089/0897715041269713

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Capelli C, Antonutto G, Kenfack MA, et al. Factors determining the time course of VO2(max) decay during bedrest: implications for VO2(max) limitation. Eur J Appl Physiol. 2006;98(2):152–60. PubMed ID: 16924528 doi:10.1007/s00421-006-0252-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Clausen M, Pendergast DR, Willer B, Leddy J. Cerebral blood flow during treadmill exercise is a marker of physiological postconcussion syndrome in female athletes. J Head Trauma Rehabil. 2016;31(3):215–24. PubMed ID: 26098254 doi:10.1097/HTR.0000000000000145

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Collins CL, Fletcher EN, Fields SK, et al. Neck strength: a protective factor reducing risk for concussion in high school sports. J Prim Prev. 2014;35(5):309–19. PubMed ID: 24930131 doi:10.1007/s10935-014-0355-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Cordingley D, Girardin R, Reimer K, et al. Graded aerobic treadmill testing in pediatric sports-related concussion: safety, clinical use, and patient outcomes. J Neurosurg Pediatr. 2016;18(6):693–702. doi:10.3171/2016.5.PEDS16139

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Dahl E, Emanuelson I. Motor proficiency in children with mild traumatic brain injury compared a control group. J Rehabil Med. 2013;45(8):729–33. PubMed ID: 24002307 doi:10.2340/16501977-1188

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Damiano DL, DeJong SL. A systematic review of the effectiveness of treadmill training and body weight support in pediatric rehabilitation. J Neurol Phys Ther. 2009;33(1):27–44. PubMed ID: 19265768 doi:10.1097/NPT.0b013e31819800e2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Darling SR, Leddy JJ, Baker JG, et al. Evaluation of the Zurich guidelines and exercise testing for return to play in adolescents following concussion. Clin J Sport Med. 2014;24(2):128–33. PubMed ID: 24184849 doi:10.1097/JSM.0000000000000026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Dobson JL, Yarbrough MB, Perez J, Evans K, Buckley T. Sport-related concussion induces transient cardiovascular autonomic dysfunction. Am J Physiol Regul Integr Comp Physiol. 2017;312(4):R575–84. PubMed ID: 28148495 doi:10.1152/ajpregu.00499.2016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Drijkoningen D, Caeyenberghs K, Vander Linden C, Van Herpe K, Duysens J, Swinnen SP. Associations between muscle strength asymmetry and impairments in gait and posture in young brain-injured patients. J Neurotrauma. 2015;32(17):1324–32. PubMed ID: 25738975 doi:10.1089/neu.2014.3787

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Freivogel S, Mehrholz J, Husak-Sotomayor T, Schmalohr D. Gait training with the newly developed ‘LokoHelp’-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj. 2008;22(7-8):625–32. PubMed ID: 18568717 doi:10.1080/02699050801941771

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Gagnon I, Swaine B, Friedman D, Forget R. Children show decreased dynamic balance after mild traumatic brain injury. Arch Phys Med Rehabil. 2004;85(3):444–52. PubMed ID: 15031831 doi:10.1016/j.apmr.2003.06.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Gall B, Parkhouse W, Goodman D. Exercise following a sport induced concussion. Br J Sports Med. 2004;38(6):773–7. PubMed ID: 15562179 doi:10.1136/bjsm.2003.009530

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Gall B, Parkhouse W, Goodman D. Heart rate variability of recently concussed athletes at rest and exercise. Med Sci Sports Exerc. 2004;36:1269–74. PubMed ID: 15292731 doi:10.1249/01.MSS.0000135787.73757.4D

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Giza CC, Hovda DA. The new neurometabolic cascade of concussion. Neurosurgery. 2014;75(suppl 4):S24–33. doi:10.1227/NEU.0000000000000505

  • 22.

    Goldstein B, Toweill D, Lai S, Sonnenthal K, Kimberly B. Uncoupling of the autonomic and cardiovascular systems in acute brain injury. Am J Physiol Regul Integr Comp Physiol. 1998;275(4):R1287–92. doi:10.1152/ajpregu.1998.275.4.R1287

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Gölge M, Müller M, Dreesmann M, Hoppe B, Wenzelburger R, Kuhtz-Buschbeck JP. Recovery of the precision grip in children after traumatic brain injury. Arch Phys Med Rehabil. 2004;85(9):1435–44. doi:10.1016/j.apmr.2003.11.029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Griesbach GS, Hovda D, Molteni R, Wu A, Gomez-Pinilla F. Voluntary exercise following traumatic brain injury: brain-derived neurotrophic factor upregulation and recovery of function. Neuroscience. 2004;125(1):129–39. PubMed ID: 15051152 doi:10.1016/j.neuroscience.2004.01.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Grool AM, Aglipay M, Momoli F, et al. Association between early participation in physical activity following acute concussion and persistent postconcussive symptoms in children and adolescents. JAMA. 2016;316(23):2504–14. PubMed ID: 27997652 doi:10.1001/jama.2016.17396

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hassett L, Harmer A, Moseley A, Mackey M. Validity of the modified 20-metre shuttle test: assessment of cardiorespiratory fitness in people who have sustained a traumatic brain injury. Brain Inj. 2007;21(10):1069–77. PubMed ID: 17891570 doi:10.1080/02699050701630375

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hassett L, Moseley A, Harmer A. The aetiology of reduced cardiorespiratory fitness among adults with severe traumatic brain injury and the relationship with physical activity: a narrative review. Brain Impairment. 2016;17(01):43–54. doi:10.1017/BrImp.2015.28

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Hassett L, Moseley AM, Harmer AR. Fitness training for cardiorespiratory conditioning after traumatic brain injury. Cochrane Database Syst Rev. 2017;12:CD006123. PubMed ID: 29286534

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hawryluk GW, Bullock MR. Past, present, and future of traumatic brain injury research. Neurosurg Clin N Am. 2016;27(4):375–96. PubMed ID: 27637391 doi:10.1016/j.nec.2016.05.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Hötting K, Röder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev. 2013;37(9):2243–57. doi:10.1016/j.neubiorev.2013.04.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Imhoff S, Fait P, Carrier-Toutant F, Boulard G. Efficiency of an active rehabilitation intervention in a slow-to-recover paediatric population following mild traumatic brain injury: a pilot study. J Sports Med. 2016;2016:1–11. doi:10.1155/2016/5127374

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Jourdan C, Brugel D, Hubeaux K, Toure H, Laurent‐Vannier A, Chevignard M. Weight gain after childhood traumatic brain injury: a matter of concern. Dev Med Child Neurol. 2012;54(7):624–8. PubMed ID: 22524689 doi:10.1111/j.1469-8749.2012.04291.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Katz-Leurer M, Rotem H, Keren O, Meyer S. Heart rate and heart rate variability at rest and during exercise in boys who suffered a severe traumatic brain injury and typically-developed controls. Brain Inj. 2010;24(2):110–4. PubMed ID: 20085448 doi:10.3109/02699050903508234

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Katz-Leurer M, Rotem H, Keren O, Meyer S. The effect of variable gait modes on walking parameters among children post severe traumatic brain injury and typically developed controls. NeuroRehabilitation. 2011;29(1):45–51. PubMed ID: 21876295

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Katz-Leurer M, Rotem H, Lewitus H, Keren O, Meyer S. Relationship between balance abilities and gait characteristics in children with post-traumatic brain injury. Brain Inj. 2008;22(2):153–9. PubMed ID: 18240044 doi:10.1080/02699050801895399

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Katz-Leurer M, Rottem H, Meyer S. Hand-held dynamometry in children with traumatic brain injury: within-session reliability. Pediatr Phys Ther. 2008;20(3):259–63. PubMed ID: 18703964 doi:10.1097/PEP.0b013e3181824782

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Keenan HT, Hooper SR, Wetherington CE, Nocera M, Runyan DK. Neurodevelopmental consequences of early traumatic brain injury in 3-year-old children. Pediatrics. 2007;119(3):e616–23. PubMed ID: 17332181 doi:10.1542/peds.2006-2313

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Kempermann G, Fabel K, Ehninger D, et al. Why and how physical activity promotes experience-induced brain plasticity. Front Neurosci. 2010;4:189. PubMed ID: 21151782 doi:10.3389/fnins.2010.00189

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Keren O, Yupatov S, Radai M, et al. Heart rate variability (HRV) of patients with traumatic brain injury (TBI) during the post-insult sub-acute period. Brain Inj. 2005;19(8):605–11. PubMed ID: 16175814 doi:10.1080/02699050400024946

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Kim C-T, Greenberg J, Kim H. Pediatric rehabilitation: trends in length of stay. J Pediatr Rehabil Med. 2013;6(1):11–7. PubMed ID: 23481887

  • 41.

    Kim S, Zemon V, Cavallo MM, Rath JF, McCraty R, Foley FW. Heart rate variability biofeedback, executive functioning and chronic brain injury. Brain Inj. 2013;27(2):209–22. PubMed ID: 23384218 doi:10.3109/02699052.2012.729292

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Kozlowski KF, Graham J, Leddy JJ, Devinney-Boymel L, Willer BS. Exercise intolerance in individuals with postconcussion syndrome. J Athl Train. 2013;48(5):627–35. PubMed ID: 23952041 doi:10.4085/1062-6050-48.5.02

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Kuhtz-Buschbeck JP, Stolze H, Ritz A. Analyses of gait, reaching, and grasping in children after traumatic brain injury. Arch Phys Med Rehabil. 2003;84(3):424–30. PubMed ID: 12638112 doi:10.1053/apmr.2003.50017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Kurowski BG, Hugentobler J, Quatman-Yates C, et al. Aerobic exercise for adolescents with prolonged symptoms after mild traumatic brain injury: an exploratory randomized clinical trial. J Head Trauma Rehabil. 2017;32(2):79–89. PubMed ID: 27120294 doi:10.1097/HTR.0000000000000238

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    La Fountaine MF, Heffernan KS, Gossett JD, Bauman WA, De Meersman RE. Transient suppression of heart rate complexity in concussed athletes. Auton Neurosci. 2009;148(1):101–3. doi:10.1016/j.autneu.2009.03.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Lal A, Kolakowsky-Hayner SA, Ghajar J, Balamane M. The effect of physical exercise after a concussion: a systematic review and meta-analysis. Am J Sports Med. 2018;46(3):743–52. doi:10.1177/0363546517706137

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Laurer HL, Bareyre FM, Lee VM, et al. Mild head injury increasing the brain’s vulnerability to a second concussive impact. J Neurosurg. 2001;95(5):859–70. PubMed ID: 11702878 doi:10.3171/jns.2001.95.5.0859

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Leddy J, Hinds A, Sirica D, Willer B. The role of controlled exercise in concussion management. PM R. 2016;8(3):S91–100. doi:10.1016/j.pmrj.2015.10.017

  • 49.

    Leddy JJ, Baker JG, Kozlowski K, Bisson L, Willer B. Reliability of a graded exercise test for assessing recovery from concussion. Clin J Sport Med. 2011;21(2):89–94. PubMed ID: 21358497 doi:10.1097/JSM.0b013e3181fdc721

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Leddy JJ, Baker JG, Merchant A, et al. Brain or strain? Symptoms alone do not distinguish physiologic concussion from cervical/vestibular injury. Clin J Sport Med. 2015;25(3):237–42. PubMed ID: 25051194 doi:10.1097/JSM.0000000000000128

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Leddy JJ, Hinds AL, Miecznikowski J, et al. Safety and prognostic utility of provocative exercise testing in acutely concussed adolescents: a randomized trial. Clin J Sport Med. 2018;28(1):13–20. PubMed ID: 29257777 doi:10.1097/JSM.0000000000000431

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Leddy JJ, Kozlowski K, Donnelly JP, Pendergast DR, Epstein LH, Willer B. A preliminary study of subsymptom threshold exercise training for refractory post-concussion syndrome. Clin J Sport Med. 2010;20(1):21–7. PubMed ID: 20051730 doi:10.1097/JSM.0b013e3181c6c22c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Leddy JJ, Willer B. Use of graded exercise testing in concussion and return-to-activity management. Curr Sports Med Rep. 2013;12(6):370–6. PubMed ID: 24225521 doi:10.1249/JSR.0000000000000008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Lee S, Moore AD, Everett ME, Stenger MB, Platts SH. Aerobic exercise deconditioning and countermeasures during bed rest. Aviat Space Environ Med. 2010;81(1):52–63. PubMed ID: 20058738 doi:10.3357/ASEM.2474.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Lee YM, Wu A, Zuckerman SL, et al. Obesity and neurocognitive recovery after sports-related concussion in athletes: a matched cohort study. Phys Sportsmed. 2016;44(3):217–22. PubMed ID: 27456455 doi:10.1080/00913847.2016.1216718

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Lloyd J, Wilson ML, Tenovuo O, Saarijärvi S. Outcomes from mild and moderate traumatic brain injuries among children and adolescents: a systematic review of studies from 2008–2013. Brain Inj. 2015;29(5):539–49. PubMed ID: 25790086 doi:10.3109/02699052.2014.1002003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Longhi L, Saatman KE, Fujimoto S, et al. Temporal window of vulnerability to repetitive experimental concussive brain injury. Neurosurgery. 2005;56(2):364–74. PubMed ID: 15670384 doi:10.1227/01.NEU.0000149008.73513.44

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Manikas V, Babl F, Hearps SJ, Dooley J, Anderson V. Impact of exercise on clinical symptom report and neurocognition following concussion in children and adolescents. J Neurotrauma. 2017;34(11):1932–8. PubMed ID: 28228043 doi:10.1089/neu.2016.4762

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    McCrory P, Meeuwisse W, Dvorak J, et al. Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med. 2017;51(11):838–47. PubMed ID: 28446457

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Menon DK, Schwab K, Wright DW, Maas AI. Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil. 2010;91(11):1637–40. PubMed ID: 21044706 doi:10.1016/j.apmr.2010.05.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Morris SL, Dodd KJ, Morris ME. Reliability of dynamometry to quantify isometric strength following traumatic brain injury. Brain Inj. 2008;22(13–14):1030–7. PubMed ID: 19117182 doi:10.1080/02699050802533775

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Mossberg KA, Amonette WE, Masel BE. Endurance training and cardiorespiratory conditioning after traumatic brain injury. J Head Trauma Rehabil. 2010;25(3):173–83. PubMed ID: 20473091 doi:10.1097/HTR.0b013e3181dc98ff

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Mychasiuk R, Hehar H, Ma I, Candy S, Esser MJ. Reducing the time interval between concussion and voluntary exercise restores motor impairment, short-term memory, and alterations to gene expression. Eur J Neurosci. 2016;44(7):2407–17. PubMed ID: 27521273 doi:10.1111/ejn.13360

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Neurology L. The changing landscape of traumatic brain injury research. Lancet Neurol. 2012;11(8):651. doi:10.1016/S1474-4422(12)70166-7

  • 65.

    O’Kane JW, Levy MR, Neradilek M, Polissar NL, Schiff MA. Evaluation of the Zachery Lystedt Law among female youth soccer players. Phys Sportsmed. 2014;42(3):39–44. doi:10.3810/psm.2014.09.2074

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Paniccia M, Verweel L, Thomas SG, et al. Heart rate variability following youth concussion: how do autonomic regulation and concussion symptoms differ over time postinjury? BMJ Open Sport Exerc Med. 2018;4(1):e000355. PubMed ID: 30305921 doi:10.1136/bmjsem-2018-000355

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Patradoon-Ho P, Scheinberg A, Baur L. Obesity in children and adolescents with acquired brain injury. Pediatr Rehabil. 2005;8(4):303–8. PubMed ID: 16192105 doi:10.1080/13638490500049578

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Polak P, Leddy JJ, Dwyer MG, Willer B, Zivadinov R. Diffusion tensor imaging alterations in patients with postconcussion syndrome undergoing exercise treatment: a pilot longitudinal study. J Head Trauma Rehabil. 2015;30(2):E32–42. PubMed ID: 24721808 doi:10.1097/HTR.0000000000000037

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Reed N, Taha T, Monette G, Keightley M. A preliminary exploration of concussion and strength performance in youth ice hockey players. Int J Sports Med. 2016;37(09):708–13. doi:10.1055/s-0042-104199

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Rhine TD. Applying a Novel Balance Technology to Evaluate Postural Instability following Pediatric Mild Traumatic Brain Injury. Cincinnati, OH: University of Cincinnati; 2013.

    • Search Google Scholar
    • Export Citation
  • 71.

    Rossi C, Sullivan SJ. Motor fitness in children and adolescents with traumatic brain injury. Arch Phys Med Rehabil. 1996;77(10):1062–5. PubMed ID: 8857887 doi:10.1016/S0003-9993(96)90069-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Sambasivan K, Grilli L, Gagnon I. Balance and mobility in clinically recovered children and adolescents after a mild traumatic brain injury. J Pediatr Rehabil Med. 2015;8(4):335–44. PubMed ID: 26684073 doi:10.3233/PRM-150351

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Schneider KJ, Leddy JJ, Guskiewicz KM, et al. Rest and treatment/rehabilitation following sport-related concussion: a systematic review. Br J Sports Med. 2017;51(12):930–4. PubMed ID: 28341726 doi:10.1136/bjsports-2016-097475

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Shah E, Lodh R, Siddell P, Morrall MC. Interventions for managing weight change following paediatric acquired brain injury: a systematic review. Dev Med Child Neurol. 2016;58(10):1004–8. PubMed ID: 27383034 doi:10.1111/dmcn.13182

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Stephens J, Salorio C, Denckla M, Mostofsky S, Suskauer S. Subtle motor findings during recovery from pediatric traumatic brain injury: a preliminary report. J Mot Behav. 2017;49(1):20–6. PubMed ID: 27635631 doi:10.1080/00222895.2016.1204267

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Tatla SK, Radomski A, Cheung J, Maron M, Jarus T. Wii-habilitation as balance therapy for children with acquired brain injury. Dev Neurorehabil. 2014;17(1):1–15. PubMed ID: 23231377 doi:10.3109/17518423.2012.740508

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Thomas DG, Apps JN, Hoffmann RG, McCrea M, Hammeke T. Benefits of strict rest after acute concussion: a randomized controlled trial. Pediatrics. 2015;135(2):213–23. PubMed ID: 25560444 doi:10.1542/peds.2014-0966

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Thurman DJ. The epidemiology of traumatic brain injury in children and youths: a review of research since 1990. J Child Neurol. 2016;31(1):20–7. PubMed ID: 25123531 doi:10.1177/0883073814544363

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Tosetti P, Hicks RR, Theriault E, et al. Toward an international initiative for traumatic brain injury research. J Neurotrauma. 2013;30(14):1211–22. PubMed ID: 23731282 doi:10.1089/neu.2013.2896

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Yeates KO, Swift E, Taylor HG, et al. Short-and long-term social outcomes following pediatric traumatic brain injury. J Int Neuropsychol Soc. 2004;10(3):412–26. doi:10.1017/S1355617704103093

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Yuan W, Wade SL, Quatman-Yates C, Hugentobler JA, Gubanich PJ, Kurowski BG. Structural connectivity related to persistent symptoms after mild TBI in adolescents and response to aerobic training: preliminary investigation. J Head Trauma Rehabil. 2017;32(6):378–84. PubMed ID: 28520668 doi:10.1097/HTR.0000000000000318

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Zemek RL, Farion KJ, Sampson M, McGahern C. Prognosticators of persistent symptoms following pediatric concussion: a systematic review. JAMA Pediatr. 2013;167(3):259–65. PubMed ID: 23303474 doi:10.1001/2013.jamapediatrics.216

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 128 128 53
Full Text Views 33 33 24
PDF Downloads 10 10 4