Assessing the Validity of Standing Long Jump to Predict Muscle Power in Children With and Without Motor Delays

in Pediatric Exercise Science
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $68.00

1 year subscription

USD  $90.00

Student 2 year subscription

USD  $129.00

2 year subscription

USD  $168.00

Purpose: To determine the validity of standing long jump (SLJ) for predicting muscle power in children with and without developmental coordination disorder (DCD). Methods: A total of 589 children were recruited as part of the Coordination and Activity Tracking in CHildren study (251 girls and 338 boys; mean age 59.2 mo). Children were classified as typically developing (>16th percentile), at risk for DCD (sixth to 16th percentile), or probable DCD (<sixth percentile) based on Movement Assessment Battery for Children—Second Edition scores. SLJ was measured from the back of the heel. Peak power and mean power over 10 seconds and 30 seconds were measured using the Wingate test. Results: SLJ was moderately correlated with peak and mean powers in all groups (R = .51–.55). Regression analysis showed that when combined with weight and age, SLJ performance could predict peak power and mean power over 10 seconds and 30 seconds in typically developing children (adjusted R2 = .68, .61, and .58, P < .001, respectively) and in children with risk for DCD (adjusted R2 = .74, .65, and .60, respectively) and probable DCD (adjusted R2 = .68, .61, and .59, respectively). Conclusions: SLJ, in combination with weight and age, may be used to measure muscle power in typically developing children, and in children with risk for DCD and probable DCD. This measure can be used as an inexpensive estimate of musculoskeletal fitness in children regardless of motor abilities.

Bulten and Cairney are with the Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada. King-Dowling and Cairney are with the INfant and Child Health Lab, Department of Family Medicine, McMaster University, Hamilton, Ontario, Canada. King-Dowling is also with the Child Health & Exercise Medicine Program, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.

Cairney (john.cairney@utoronto.ca) is corresponding author.
  • 1.

    Aertssen W, Bonney E, Ferguson G, Smits-Engelsman B. Subtyping children with developmental coordination disorder based on physical fitness outcomes. Hum Mov Sci. 2018;60:87–97. PubMed ID: 29852337 doi:10.1016/j.humov.2018.05.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®). Washington, DC: American Psychiatric Association Publishing; 2013.

    • Search Google Scholar
    • Export Citation
  • 3.

    Artero EG, España-Romero V, Castro-Piñero J, et al. Criterion-related validity of field-based muscular fitness tests in youth. J Sports Med Phys Fitness. 2012;52(3):263. PubMed ID: 22648464

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bar-Or O, Rowland T. Children and exercise in a clinical context—an overview. In: Bar-Or O, Rowland T, editors. Pediatric Exercise Medicine: From Physiologic Principles to Health Care Application. Champaign, IL: Human Kinetics; 2004, pp. 105–15.

    • Search Google Scholar
    • Export Citation
  • 5.

    Blank R, Smits-Engelsman B, Polatajko H, Wilson P. European Academy for Childhood Disability (EACD): recommendations on the definition, diagnosis and intervention of developmental coordination disorder (long version). Dev Med Child Neurol. 2012;54(1):54–93. PubMed ID: 22171930 doi:10.1111/j.1469-8749.2011.04171.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Cairney J, Missiuna C, Timmons BW, et al. The Coordination and Activity Tracking in Children (CATCH) study: rationale and design. BMC Public Health. 2015;15(1):1–9. doi:10.1186/s12889-015-2582-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Caldwell HAT, Proudfoot NA, King-Dowling S, Di Cristofaro NA, Cairney J, Timmons BW. Tracking of physical activity and fitness during the early years. Appl Physiol Nutr Metab. 2016;41(5):504–10. PubMed ID: 27045869 doi:10.1139/apnm-2015-0338

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Cantell M, Crawford SG, Doyle-Baker PK. Physical fitness and health indices in children, adolescents and adults with high or low motor competence. Hum Mov Sci. 2008;27(2):344–62. PubMed ID: 18395282 doi:10.1016/j.humov.2008.02.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Castro-Piñero J, Ortega FB, Artero EG, et al. Assessing muscular strength in youth: usefulness of standing long jump as a general index of muscular fitness. J Strength Cond Res. 2010;24(7):1810–7. doi:10.1519/JSC.0b013e3181ddb03d

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Cermak SA, Katz N, Weintraub N, et al. Participation in physical activity, fitness, and risk for obesity in children with developmental coordination disorder: a cross-cultural study. Occup Ther Int. 2015;22(4):163–73. PubMed ID: 26123622 doi:10.1002/oti.1393

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Committee on Fitness Measures and Health Outcomes in Youth, Food and Nutrition Board, Institute of Medicine. Health related fitness measures for youth: musculoskeletal fitness. In: Pate R, Oria M, Pillsbury L, editors. Fitness measures and health outcomes in youth. Washington, DC: National Academies Press; 2012: 153–181.

    • Search Google Scholar
    • Export Citation
  • 12.

    Ellinoudis T, Evaggelinou C, Kourtessis T, Konstantinidou Z, Venetsanou F, Kambas A. Reliability and validity of age band 1 of the movement assessment battery for children—second edition. Res Dev Disabil. 2011;32(3):1046–51. PubMed ID: 21333488 doi:10.1016/j.ridd.2011.01.035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Fernandez-Santos JR, Ruiz JR, Cohen DD, Gonzalez-Montesinos JL, Castro-Piñero J. Reliability and validity of tests to assess lower-body muscular power in children. J Strength Cond Res. 2015;29(8):2277–85. PubMed ID: 25647647 doi:10.1519/JSC.0000000000000864

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Fry AC, Irwin CC, Nicoll JX, Ferebee DE. Muscular strength and power in 3- to 7-year-old children. Pediatr Exerc Sci. 2015;27(3):345–54. PubMed ID: 25984800 doi:10.1123/pes.2014-0152

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Gomez-Bruton A, Gabel L, Nettlefold L, Macdonald H, Race D, McKay H. Estimation of peak muscle power from a countermovement vertical jump in children and adolescents. J Strength Cond Res. 2019;33(2):390–98. PubMed ID: 28570492 doi:10.1519/JSC.0000000000002002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Henderson S, Sugden D, Barnett A. Movement Assessment Battery for Children Examiner’s Manuel. 2nd ed. London, UK: Harcourt Assessment; 2007.

    • Search Google Scholar
    • Export Citation
  • 17.

    Katzmarzyk PT, Craig CL. Musculoskeletal fitness and risk of mortality. Med Sci Sports Exerc. 2002;34(5):740–4. PubMed ID: 11984288 doi:10.1097/00005768-200205000-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    King-Dowling S, Proudfoot NA, Cairney J, Timmins BW. Validity of field assessments to predict peak muscle power in preschoolers. Appl Physiol Nutr Metab. 2017;42(8):850–4. PubMed ID: 28371585 doi:10.1139/apnm-2016-0426

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    King-Dowling S, Rodriguez C, Missiuna C, Timmons BW, Cairney J. Health-related fitness in preschool children with and without motor delays. Med Sci Sports Exerc. 2018;50(7):1442–8. PubMed ID: 29474207 doi:10.1249/MSS.0000000000001590

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Lingam R, Hunt L, Golding J, Jongmans M, Emond A. Prevalence of developmental coordination disorder using the DSM-IV at 7 years of age: a UK population-based study. Pediatrics. 2009;123(4):e693–700. PubMed ID: 19336359 doi:10.1542/peds.2008-1770

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Magnussen CG, Schmidt MD, Dwyer T, Venn A. Muscular fitness and clustered cardiovascular disease risk in Australian youth. Eur J Appl Physiol. 2012;112(8):3167–71. PubMed ID: 22183088 doi:10.1007/s00421-011-2286-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Nguyen T, Obeid J, Timmons BW. Reliability of fitness measures in 3- to 5-year-old children. Pediatr Exerc Sci. 2011;23(2):250–60. PubMed ID: 21633137 doi:10.1123/pes.23.2.250

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Ortega FB, Ruiz JR, Castillo MJ, Sjöström M. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes. 2008;32(1):1–11. doi:10.1038/sj.ijo.0803774

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Plowman SA. Top 10 research questions related to musculoskeletal physical fitness testing in children and adolescents. Res Q Exerc Sport. 2014;85(2):174–87. PubMed ID: 25098013 doi:10.1080/02701367.2014.899857

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Rivilis I, Hay J, Cairney J, Klentrou P, Liu J, Faught BE. Physical activity and fitness in children with developmental coordination disorder: a systematic review. Res Dev Disabil. 2011;32(3):894–910. PubMed ID: 21310588 doi:10.1016/j.ridd.2011.01.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Ruiz JR, Castro-Piñero J, Artero EG, et al. Predictive validity of health-related fitness in youth: a systematic review. Br J Sports Med. 2009;43(12):909–23. PubMed ID: 19158130 doi:10.1136/bjsm.2008.056499

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Sugden D, Chambers M, Utley A. Leeds Consensus Statement:Development Coordination Disorder as a Specific Learning Difficulty. Swindon, UK: Economic and Social Research Council; 2006.

    • Search Google Scholar
    • Export Citation
  • 28.

    Tharp GD, Newhouse RK, Uffelman L, Thorland WG, Johnson GO. Comparison of sprint and run times with performance on the Wingate anaerobic test. Res Q Exerc Sport. 1985;56(1):73–6. doi:10.1080/02701367.1985.10608434

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Wuang YP, Su JH, Su CY. Reliability and responsiveness of the Movement Assessment Battery for Children-Second Edition Test in children with developmental coordination disorder. Dev Med Child Neurol. 2012;54(2):160–5. PubMed ID: 22224668 doi:10.1111/j.1469-8749.2011.04177.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Zwicker JG, Missiuna C, Harris SR, Boyd LA. Developmental coordination disorder: a review and update. Eur J Paediatr Neurol. 2012;16(6):573–81. PubMed ID: 22705270 doi:10.1016/j.ejpn.2012.05.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 256 256 45
Full Text Views 25 25 4
PDF Downloads 22 22 4