Effects of a 12-Week Exercise Intervention on Subsequent Compensatory Behaviors in Adolescent Girls: An Exploratory Study

in Pediatric Exercise Science
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $68.00

1 year subscription

USD  $90.00

Student 2 year subscription

USD  $129.00

2 year subscription

USD  $168.00

Purpose: Chronic exercise programs can induce adaptive compensatory behavioral responses through increased energy intake (EI) and/or decreased free-living physical activity in adults. These responses can negate the benefits of an exercise-induced energy deficit; however, it is unclear whether young people experience similar responses. This study examined whether exercise-induced compensation occurs in adolescent girls. Methods: Twenty-three adolescent girls, heterogeneous for weight status, completed the study. Eleven adolescent girls aged 13 years completed a 12-week supervised exercise intervention (EX). Twelve body size–matched girls comprised the nonexercise control group (CON). Body composition, EI, free-living energy expenditure (EE), and peak oxygen uptake (V˙O2) were measured repeatedly over the intervention. Results: Laboratory EI (EX: 9027, 9610, and 9243 kJ·d−1 and CON: 9953, 9770, and 10,052 kJ·d−1 at 0, 12, and 18 wk, respectively; effect size [ES] = 0.26, P = .46) and free-living EI (EX: 7288, 6412, and 5273, 4916 kJ·d−1 and CON: 7227, 7128, and 6470, 6337 kJ·d−1 at 0, 6, 12, and 18 wk, respectively; ES ≤ 0.26, P = .90) did not change significantly over time and were similar between groups across the duration of the study. Free-living EE was higher in EX than CON (13,295 vs 12,115 kJ·d−1, ES ≥ 0.88, P ≥ .16), but no significant condition by time interactions were observed (P ≥ .17). Conclusion: The current findings indicate that compensatory changes in EI and EE behaviors did not occur at a group level within a small cohort of adolescent girls. However, analysis at the individual level highlights large interindividual variability in behaviors, which suggests a larger study may be prudent to extend this initial exploratory research.

Massie, Smallcombe, and Tolfrey are with the School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom. Massie is also with the Institute for Community Research and Development, University of Wolverhampton, Wolverhampton, United Kingdom.

Tolfrey (k.tolfrey@lboro.ac.uk) is corresponding author.
  • 1.

    Adamo KB, Rutherford JA, Goldfield GS. Effects of interactive video game cycling on overweight and obese adolescent health. Appl Physiol Nutr Metab. 2010;35(6):805–15. PubMed ID: 21164552 doi:10.1139/H10-078

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Alberga AS, Sigal RJ, Goldfield G, Prud’homme D, Kenny GP. Overweight and obese teenagers: why is adolescence a critical period? Pediatr Obes. 2012;7(4):261–73. doi:10.1111/j.2047-6310.2011.00046.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Albert MH, Drapeau V, Mathieu ME. Timing of moderate-to-vigorous exercise and its impact on subsequent energy intake in young males. Physiol Behav. 2015;151:557–62. doi:10.1016/j.physbeh.2015.08.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Armstrong N, Welsman J, Winsley R. Is peak V˙O2 a maximal index of children’s aerobic fitness? Int J Sports Med. 1996;17(5):356–9. PubMed ID: 8858407 doi:10.1055/s-2007-972860

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Arvaniti K, Richard D, Tremblay A. Reproducibility of energy and macronutrient intake and related substrate oxidation rates in a buffet-type meal. Brit J Nutr. 2000;83(5):489–95. PubMed ID: 10953673 doi:10.1017/S0007114500000623

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Atkinson G, Batterham AM. True and false interindividual differences in the physiological response to an intervention. Exp Physiol. 2015;100(6):577–88. PubMed ID: 25823596 doi:10.1113/EP085070

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Baggett CD, Stevens J, Catellier DJ, Evenson KR, McMurray RG, He K, Treuth MS. Compensation or displacement of physical activity in middle school girls: the Trial of Activity for Adolescent Girls. Int J Obes. 2010;34(7):1193–9. doi:10.1038/ijo.2010.31

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Baxter-Jones ADG, Eisenmann JC, Sherar LB. Controlling for maturation in pediatric exercise science. Pediatr Exer Sci. 2005;17(1):18–30. doi:10.1123/pes.17.1.18

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Blaak EE, Westerterp KR, Bar-Or O, Wouters LJ, Saris WH. Total energy expenditure and spontaneous activity in relation to training in obese boys. Am J Clin Nutr. 1992;55(4):777–82. PubMed ID: 1550058 doi:10.1093/ajcn/55.4.777

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Black AE, Cole TJ. Within- and between-subject variation in energy expenditure measured by the doubly-labelled water technique: implications for validating reported dietary energy intake. Eur J Clin Nutr. 2000;54(5):386–94. PubMed ID: 10822285 doi:10.1038/sj.ejcn.1600970

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bozinovski NC, Bellissimo N, Thomas SG, Pencharz PB, Goode RC, Anderson GH. The effect of duration of exercise at the ventilation threshold on subjective appetite and short-term food intake in 9 to 14 year old boys and girls. Int J Behav Nutr Phys Activ. 2009;6:66. doi:10.1186/1479-5868-6-66

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Byrne NM, Wood RE, Schutz Y, Hills AP. Does metabolic compensation explain the majority of less-than-expected weight loss in obese adults during a short-term severe diet and exercise intervention? Int J Obes. 2012;36(11):1472–8. doi:10.1038/ijo.2012.109

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Cameron JD, Sigal RJ, Kenny GP, et al. Body composition and energy intake – skeletal muscle mass is the strongest predictor of food intake in obese adolescents: the HEARTY trial. Appl Physiol Nutr Metab. 2016;41(6):611–7. PubMed ID: 27111402 doi:10.1139/apnm-2015-0479

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Carson V, Spence JC. Seasonal variation in physical activity among children and adolescents: a review. Pediatr Exer Sci. 2010;22(1):81–92. doi:10.1123/pes.22.1.81

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Champagne CM, Han H, Bajpeyi S, et al. Day-to-day variation in food intake and energy expenditure in healthy women: the Dietician II Study. J Acad Nutr Diet. 2013;113(11):1532–8. PubMed ID: 24021734 doi:10.1016/j.jand.2013.07.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cohen J. Statistical Power Analysis for the Behavioural Sciences. 2nd ed. New Jersey, NJ: Lawrence Erlbaum Associates; 1988.

  • 17.

    Dodd CJ, Welsman JR, Armstrong N. Energy intake and appetite following exercise in lean and overweight girls. Appetite. 2008;51(3):482–8. PubMed ID: 18485530 doi:10.1016/j.appet.2008.03.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Foster E, Hawkins A, Adamson A. Young Person’s Food Atlas—Secondary. London, UK: Food Standards Agency; 2010.

  • 19.

    Frayn KN. Calculation of substrate oxidation in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(2):628–34. PubMed ID: 6618956

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Frémeaux AE, Mallam KM, Metcalf BS, Hosking J, Voss LD, Wilkin TJ. The impact of school-time activity on total physical activity: the activitystat hypothesis. Int J Obes. 2011;35(10):1277–83. doi:10.1038/ijo.2011.52

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Goodman A, Mackett RL, Paskins J. Activity compensation and activity synergy in British 8–13 year olds. Prev Med. 2011;53(4-5):293–8. PubMed ID: 21820009 doi:10.1016/j.ypmed.2011.07.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Gregersen NT, Flint A, Bitz C, Blundell JE, Raben A, Astrup A. Reproducibility and power of ad libitum energy intake assessed by repeated single meals. Am J Clin Nutr. 2008;87(5):1277–81. PubMed ID: 18469250 doi:10.1093/ajcn/87.5.1277

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Health and Social Care Information Centre. Health Survey for England 2015: Children’s body mass index, overweight and obesity. 2015. http://digital.nhs.uk/catalogue/PUB22610. Accessed January 25, 2018.

    • PubMed
    • Export Citation
  • 24.

    King NA, Caudwell P, Hopkins M, et al. Metabolic and behavioural compensatory responses to exercise interventions: barriers to weight loss. Obesity. 2007;15(6):1373–83. PubMed ID: 17557973 doi:10.1038/oby.2007.164

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    King NA, Hester J, Gately PJ. The effect of a medium-term activity- and diet-induced energy deficit on subjective appetite sensations in obese children. Int J Obes. 2007;31(2):334–9. doi:10.1038/sj.ijo.0803391

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    King NA, Hopkins M, Caudwell P, Stubbs RJ, Blundell JE. Beneficial effects of exercise: shifting the focus from body weight to other markers of health. Br J Sports Med. 2009;43:924–7. PubMed ID: 19793728 doi:10.1136/bjsm.2009.065557

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    King NA, Hopkins M, Caudwell P, Stubbs RJ, Blundell JE. Individual variability following 12 weeks of supervised exercise: identification and characterisation of compensation for exercise-induced weight loss. Int J Obes. 2008;32(1):177–84. doi:10.1038/sj.ijo.0803712

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    King NA, Horner K, Hills AP, et al. Exercise, appetite and weight management: understanding the compensatory responses in eating behaviour and how they contribute to variability in exercise-induced weight loss. Brit J Sport Med. 2012;46(5):315–22. doi:10.1136/bjsm.2010.082495

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Livingstone MBE, Robson PJ, Wallace JMW. Issues in dietary intake assessment of children and adolescents. Br J Nutr. 2004;92(2):S213–22. doi:10.1079/BJN20041169

  • 30.

    Manore MM, Brown K, Houtkooper L, et al. Energy balance at a crossroads: translating the science into action. Med Sci Sports Exer. 2014;46(7):1466–73. doi:10.1249/MSS.0000000000000318

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Massie R, Smith B, Tolfrey K. Recommendations for recruiting and retaining adolescent girls in chronic exercise (training) research studies. Sports. 2015;3(3):219–35. doi:10.3390/sports3030219

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Mathieu ME, Lebkowski A, Laplante E, Drapeau V, Thivel D. Optimal timing of exercise for influencing energy intake in children during school lunch. Appetite. 2018;120:416–22.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Miguet M, Masurier J, Chaput JP, et al. Cognitive restriction accentuates the increased energy intake response to a 10-month multidisciplinary weight loss program in adolescents with obesity. Appetite. 2019;134:125–34.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Rumbold PLS, St Clair Gibson A, Allsop S, Stevenson E, Dodd-Reynolds CJ. Energy intake and appetite following netball exercise over 5 days in trained 13-15 year old girls. Appetite. 2011;56(3):621–8. PubMed ID: 21352880 doi:10.1016/j.appet.2011.02.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Santos DA, Silva AM, Matias CN, et al. Validity of a combined heart rate and motion sensor for the measurement of free-living energy expenditure in very active individuals. J Sci Med Sport. 2014;17(4):387–93. PubMed ID: 24184093 doi:10.1016/j.jsams.2013.09.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Schubert MM, Desbrow B, Sabapathy S, Leveritt M. Acute exercise and subsequent energy intake: a meta-analysis. Appetite. 2013;63:92–104.

  • 37.

    Schwartz C, King NA, Perreira B, Blundell JE, Thivel D. A systematic review and meta-analysis of energy and macronutrient intake responses to physical activity interventions in children and adolescents with obesity. Pediatr Obes. 2017;12(3):179–94. doi:10.1111/ijpo.12124

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Scientific Advisory Committee on Nutrition. Dietary reference values for energy. London, UK: TSO. 2011. https://www.gov.uk/government/publications/sacn-dietary-reference-values-for-energy. Accessed January292018.

    • Search Google Scholar
    • Export Citation
  • 39.

    Shaw NJ, Crabtree NJ, Kibirige MS, Fordham JN. Ethnic and gender differences in body fat in British schoolchildren as measured by DXA. Arch Dis Child. 2007;92(10):872–5. PubMed ID: 17522163 doi:10.1136/adc.2007.117911

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Stice E, Shaw H, Marti CN. A meta-analytic review of obesity prevention programs for children and adolescents: the skinny on interventions that work. Psychol Bull. 2006;132(5):667–91. PubMed ID: 16910747 doi:10.1037/0033-2909.132.5.667

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Stubbs RJ, Hughes DA, Johnstone AM, et al. Rate and extent of compensatory changes in energy intake and expenditure in response to altered exercise and diet composition in humans. Am J Physiol Regul Integr Comp Physiol. 2004;286(2):R350–8. PubMed ID: 14707013 doi:10.1152/ajpregu.00196.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Swift DL, Johannsen NM, Lavie CJ, Earnest CP, Church TS. The role of exercise and physical activity in weight loss and maintenance. Prog Cardiovasc Dis. 2014;56(4):441–7. PubMed ID: 24438736 doi:10.1016/j.pcad.2013.09.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Tanner JM. Growth at Adolescence. 2nd ed. Oxford, UK: Blackwell Scientific Publications; 1962.

  • 44.

    Taylor RW, Jones IE, Williams SM, Goulding A. Body fat percentages measured by dual-energy-X-ray absorptiometry corresponding to recently recommended body mass index cutoffs for overweight and obesity in children and adolescents aged 3-18 y. Am J Clin Nutr. 2002;76(6):1416–21. PubMed ID: 12450911 doi:10.1093/ajcn/76.6.1416

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Thivel D, Aucouturier J, Metz L, Morio B, Duché P. Is there spontaneous energy expenditure compensation in response to intensive exercise in obese youth? Pediatr Obes. 2014;9(2):147–54. doi:10.1111/j.2047-6310.2013.00148.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Thivel D, Chaput JP, Adamo KB, Goldfield GS. Is energy intake altered by a 10-week aerobic exercise intervention in obese adolescents? Physiol Behav. 2014;135:130–4. PubMed ID: 24952265 doi:10.1016/j.physbeh.2014.06.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Thivel D, Duché P, Morio B. Energy balance in youth: an inter-dynamic concept? Br J Nutr. 2013;109(3):581–2. PubMed ID: 23298469 doi:10.1017/S0007114512005478

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Thivel D, Isacco L, Montaurier C, Boirie Y, Duché P, Morio B. The 24-h energy intake of obese adolescents is spontaneously reduced after intensive exercise: a randomized controlled trial in calorimetric chambers. PLoS ONE. 2012;7(1):e29840. PubMed ID: 22272251 doi:10.1371/journal.pone.0029840

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Thivel D, Metz L, Julien A, Morio B, Duché P. Obese but not lean adolescents spontaneously decrease energy intake after intensive exercise. Physiol Behav. 2014;123:41–6. PubMed ID: 24103421 doi:10.1016/j.physbeh.2013.09.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Thivel D, Rumbold PL, King NA, Pereira B, Blundell JE, Mathieu ME. Acute post-exercise energy and macronutrient intake in lean and obese youth: a systematic review and meta-analysis. Int J Obes. 2016;40(10):1469–79. doi:10.1038/ijo.2016.122

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    van der Heijden GJ, Sauer PJ, Sunehag AL. Twelve weeks of moderate aerobic exercise without dietary intervention or weight loss does not affect 24-h energy expenditure in lean and obese adolescents. Am J Clin Nutr. 2010;91(3):589–96. PubMed ID: 20107196 doi:10.3945/ajcn.2009.28686

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    van Strien T, Oosterveld P. The children’s DEBQ for assessment of restrained, emotional, and external eating in 7- to 12-year-old children. Int J Eat Disorder. 2008;41(1):72–81. doi:10.1002/eat.20424

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Wells JC, Fuller NJ, Dewit O, Fewtrell MS, Elia M, Cole TJ. Four-component model of body composition in children: density and hydration of fat-free mass and comparison with simpler models. Am J Clin Nutr. 1999;69(5):904–12. PubMed ID: 10232629 doi:10.1093/ajcn/69.5.904

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Xanthopoulos M, Hart C, Jelalian E. Developmental considerations in the prevention of pediatric obesity. In: Jelalian E, Steele RG, editors. Issues in Clinical Child Psychology: Handbook of Childhood and Adolescent Obesity. New York, NY: Springer; 2009, pp. 183–200.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 110 110 48
Full Text Views 12 12 6
PDF Downloads 6 6 3