The Acute Effects of a “Reduced Sitting Preschool Day” on Executive Function and Musculoskeletal Health in Preschoolers: A Randomized Cross-Over Study

in Pediatric Exercise Science

Click name to view affiliation

Yvonne G. EllisUniversity of Wollongong

Search for other papers by Yvonne G. Ellis in
Current site
Google Scholar
PubMed
Close
*
,
Dylan P. CliffUniversity of Wollongong

Search for other papers by Dylan P. Cliff in
Current site
Google Scholar
PubMed
Close
*
,
Steven J. HowardUniversity of Wollongong

Search for other papers by Steven J. Howard in
Current site
Google Scholar
PubMed
Close
*
, and
Anthony D. OkelyUniversity of Wollongong

Search for other papers by Anthony D. Okely in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: To examine the acute effects of a reduced sitting day on executive function (EF) and musculoskeletal health in preschoolers. Methods: A sample of 29 children (54% boys; 4–5 y) participated in a randomized cross-over trial. Each child completed 2 protocols, which simulate a day at childcare in random order for 2.5 hours; a typical preschool day (50% sitting) and a reduced preschool day (25% sitting) where most sitting activities were replaced with standing activities. Sitting, standing, and stepping time were objectively assessed using an activPAL accelerometer. EF was evaluated using tablet-based EF assessments (inhibition, working memory, and task shifting). Musculoskeletal health was assessed using a handheld dynamometer and goniometer. Results: Compared with the typical preschool day, the reduced sitting day showed no significant differences for EF scores. Effect sizes for inhibition (d = 0.04), working memory (d = 0.02), and shifting (d = 0.11) were all small. For musculoskeletal health, no significant differences were reported after the reduced preschool day. The effect sizes for the hip extension force, hamstring flexibility, gastrocnemius length, and balancing on 1 leg were all small (d = 0.21, d = 0.25, d = 0.28, and d = 0.28). Conclusions: This study suggests that reducing sitting time is unlikely to result in acute changes in EF and musculoskeletal health among preschoolers.

The authors are with the Faculty of Social Sciences, Early Start Research Institute, University of Wollongong, Wollongong, NSW, Australia.

Ellis (yge019@uowmail.edu.au) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Antle DM, Vézina N, Messing K, Côté JN. Development of discomfort and vascular and muscular changes during a prolonged standing task. Occup Ergonomics. 2013;11(1):2133.

    • Search Google Scholar
    • Export Citation
  • 2.

    Bäckman E, Odenrick P, Henriksson KG, Ledin T. Isometric muscle force and anthropometric values in normal children aged between 3.5 and 15 years. Scand J Rehabil Med. 1989;21(2):10514. PubMed ID: 2749194

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Blair C, Razza RP. Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Dev. 2007;78(2):64763. PubMed ID: 17381795 doi:10.1111/j.1467-8624.2007.01019.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Buckley JP, Hedge A, Yates T, et al. The sedentary office: a growing case for change towards better health and productivity. Br J Sports Med. 2015;49(21):135762. PubMed ID: 26034192 doi:10.1136/bjsports-2015-094618

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Chaput JP, Visby T, Nyby S, et al. Video game playing increases food intake in adolescents: a randomized crossover study. Am J Clin Nutr. 2011;93(6):1196203. PubMed ID: 21490141 doi:10.3945/ajcn.110.008680

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Cliff DP, Hesketh K, Vella SA, et al. Objectively measured sedentary behaviour and health and development in children and adolescents: systematic review and meta-analysis. Obes Rev. 2016;17(4):33044. PubMed ID: 26914664 doi:10.1111/obr.12371

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Cliff DP, Jones RA, Burrows TL, et al. Volumes and bouts of sedentary behavior and physical activity: associations with cardiometabolic health in obese children. Obesity. 2014;22(5):E1128. PubMed ID: 24788574 doi:10.1002/oby.20698

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Cliff DP, Reilly JJ, Okely AD. Methodological considerations in using accelerometers to assess habitual physical activity in children aged 0–5 years. J Sci Med Sport. 2009;12(5):55767. PubMed ID: 19147404 doi:10.1016/j.jsams.2008.10.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Cohen J. Statistical Power Analyses for the Social Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

  • 10.

    Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes. 2012;7(4):28494. doi:10.1111/j.2047-6310.2012.00064.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Dunstan DW, Kingwell BA, Larsen R, et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care. 2012;35(5):97683. PubMed ID: 22374636 doi:10.2337/dc11-1931

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Ellis YG, Cliff DP, Janssen X, Jones RA, Reilly JJ, Okely AD. Sedentary time, physical activity and compliance with IOM recommendations in young children at childcare. Prev Med Rep. 2017;7:2216. PubMed ID: 28879067 doi:10.1016/j.pmedr.2016.12.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ellis YG, Cliff DP, Okely AD. Childcare educators’ perceptions of and solutions to reducing sitting time in young children: a qualitative study. Early Child Educ J. 2018;46(4):37785. doi:10.1007/s10643-017-0867-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Gajdosik CG. Ability of very young children to produce reliable isometric force measurements. Pediatr Phys Ther. 2005;17(4):2517. PubMed ID: 16357679 doi:10.1097/01.pep.0000186507.74151.78

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Garcia JM, Huang TT, Trowbridge M, Weltman A, Sirard JR. Comparison of the effects of stable and dynamic furniture on physical activity and learning in children. J Prim Prev. 2016;37(6):55560. PubMed ID: 27785657 doi:10.1007/s10935-016-0451-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hamilton MT, Hamilton DG, Zderic TW. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes. 2007;56(11):265567. PubMed ID: 17827399 doi:10.2337/db07-0882

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Healy GN, Winkler EA, Owen N, Anuradha S, Dunstan DW. Replacing sitting time with standing or stepping: associations with cardio-metabolic risk biomarkers. Eur Heart J. 2015;36(39):264349. PubMed ID: 26228867 doi:10.1093/eurheartj/ehv308

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Herrmann D, Buck C, Sioen I, et al. Impact of physical activity, sedentary behaviour and muscle strength on bone stiffness in 2–10-year-old children-cross-sectional results from the IDEFICS study. Int J Behav Nutr Phys Act. 2015;12(1):112. doi:10.1186/s12966-015-0273-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Hnatiuk JA, Salmon J, Hinkley T, Okely AD, Trost S. A review of preschool children’s physical activity and sedentary time using objective measures. Am J Prev Med. 2014;47(4):48797. PubMed ID: 25084681 doi:10.1016/j.amepre.2014.05.042

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Howard SJ, Melhuish E. An early years toolbox for assessing early executive function, language, self-regulation, and social development: validity, reliability, and preliminary norms. J Psychoeduc Assess. 2017;35(3):25575. PubMed ID: 28503022 doi:10.1177/0734282916633009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Institute of Medicine. Early Childhood Obesity Prevention Policies Institute of Medicine; 2011 Available from http://www.nationalacademies.org/hmd/~/media/Files/Report%20Files/2011/Early-Childhood-Obesity-Prevention-Policies/Young%20Child%20Obesity%202011%20Recommendations.pdf

    • Search Google Scholar
    • Export Citation
  • 22.

    Janssen X, Cliff DP, Reilly JJ, et al. Validation of activPAL TM defined sedentary time and breaks in sedentary. Pediatr Exerc Sci. 2014; 26(1):1107 PubMed ID: 24019006 doi:10.1123/pes.2013-0106

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Jones RA, Hinkley T, Okely AD, Salmon J. Tracking physical activity and sedentary behavior in childhood: a systematic review. Am J Prev Med. 2013;44(6):6518. PubMed ID: 23683983 doi:10.1016/j.amepre.2013.03.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Mitchell JA, Pate RR, Beets MW, Nader PR. Time spent in sedentary behavior and changes in childhood BMI: a longitudinal study from ages 9 to 15 years. Int J Obes. 2013;37(1):5460. PubMed ID: 22430304 doi:10.1038/ijo.2012.41

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Moher D, Hopewell S, Schulz KF, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. J Clin Epidemoiol. 2010;65(3):35188. doi:10.1016/j.jclinepi.2011.10.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Mullane SL, Buman MP, Zeigler ZS, Crespo NC, Gaesser GA. Acute effects on cognitive performance following bouts of standing and light-intensity physical activity in a simulated workplace environment. J Sci Med Sport. 2017;20(5):48993. PubMed ID: 27777038 doi:10.1016/j.jsams.2016.09.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Pate RR, Almeida MJ, McIver KL, Pfeiffer KA, Dowda M. Validation and calibration of an accelerometer in preschool children. Obesity. 2006;14(11):20006. PubMed ID: 17135617 doi:10.1038/oby.2006.234

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Penning A, Okely AD, Trost SG, et al. Acute effects of reducing sitting time in adolescents: a randomized cross-over study. BMC Public Health. 2017;17(1):657. PubMed ID: 28810853 doi:10.1186/s12889-017-4660-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    PF3.2: Enrolment in Childcare and Pre-Schools [Internet]. Directorate of Employment, Labour and Social Affairs 2014 [cited 24/02/2017]. Available from https://www.oecd.org/els/soc/PF3_2_Enrolment_in_childcare_and_preschools.pdf

    • Search Google Scholar
    • Export Citation
  • 30.

    Poitras VJ, Gray CE, Janssen X, et al. Systematic review of the relationships between sedentary behaviour and health indicators in the early years (0–4 years). BMC Public Health. 2017;17(5):868. doi:10.1186/s12889-017-4849-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Salmon J, Tremblay MS, Marshall SJ, Hume C. Health risks, correlates, and interventions to reduce sedentary behavior in young people. Am J Prev Med. 2011;41(2):197206. PubMed ID: 21767728 doi:10.1016/j.amepre.2011.05.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Saunders TJ, Chaput JP, Goldfield GS, et al. Prolonged sitting and markers of cardiometabolic disease risk in children and youth: a randomized crossover study. Metabolism. 2013;62(10):14238. PubMed ID: 23773981 doi:10.1016/j.metabol.2013.05.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Saunders TJ, Chaput J-P, Goldfield GS, et al. Children and youth do not compensate for an imposed bout of prolonged sitting by reducing subsequent food intake or increasing physical activity levels: a randomised cross-over study. Br J Nutr. 2014;111(4):74754. doi:10.1017/S000711451300295X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Tremblay MS, Aubert S, Barnes JD, et al. Sedentary Behavior Research Network (SBRN)–terminology consensus project process and outcome. Int J Behav Nutr Phys Act. 2017;14(1):75. PubMed ID: 28599680 doi:10.1186/s12966-017-0525-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Tremblay MS, LeBlanc AG, Kho ME, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act. 2011;8(1):98. doi:10.1186/1479-5868-8-98

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    van Loo CM, Okely AD, Batterham MJ, et al. Validation of the SenseWear Mini activity monitor in 5–12-year-old children. J Sci Med Sport. 2017;20(1):559. PubMed ID: 27256787 doi:10.1016/j.jsams.2016.04.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Voss MW, Carr LJ, Clark R, Weng T. Revenge of the “sit” II: does lifestyle impact neuronal and cognitive health through distinct mechanisms associated with sedentary behavior and physical activity? Mental Health Phys Act. 2014;7(1):924. doi:10.1016/j.mhpa.2014.01.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Ward DS, Vaughn A, McWilliams C, Hales D. Interventions for increasing physical activity at child care. Med Sci Sports Exerc. 2010;42(3):52634. PubMed ID: 20068495 doi:10.1249/MSS.0b013e3181cea406

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3024 980 108
Full Text Views 52 7 0
PDF Downloads 46 12 0