Effect of Drop Height on Vertical Jumping Performance in Pre-, Circa-, and Post-Pubertal Boys and Girls

in Pediatric Exercise Science

Click name to view affiliation

Anthony Birat Université Clermont Auvergne

Search for other papers by Anthony Birat in
Current site
Google Scholar
PubMed
Close
*
,
David Sebillaud Université Clermont Auvergne

Search for other papers by David Sebillaud in
Current site
Google Scholar
PubMed
Close
*
,
Pierre Bourdier Université Clermont Auvergne

Search for other papers by Pierre Bourdier in
Current site
Google Scholar
PubMed
Close
*
,
Eric Doré Université Clermont Auvergne

Search for other papers by Eric Doré in
Current site
Google Scholar
PubMed
Close
*
,
Pascale Duché Université Clermont Auvergne

Search for other papers by Pascale Duché in
Current site
Google Scholar
PubMed
Close
*
,
Anthony J. Blazevich Edith Cowan University

Search for other papers by Anthony J. Blazevich in
Current site
Google Scholar
PubMed
Close
*
,
Dimitrios Patikas Aristotle University of Thessaloniki

Search for other papers by Dimitrios Patikas in
Current site
Google Scholar
PubMed
Close
*
, and
Sébastien Ratel Université Clermont Auvergne

Search for other papers by Sébastien Ratel in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: To examine the effect of drop height on vertical jumping performance in children with respect to sex and maturity status. Methods: Thirty-seven pre-pubertal, 71 circa-pubertal, and 69 post-pubertal boys and girls performed, in a randomized order, 2 squat jumps, 2 countermovement jumps, and 2 drop jumps (DJ) from heights of 20, 30, 40, 50, 60, and 70 cm. The trial with the best jump height in each test was used for analysis. Results: No significant sex × maturity status × jump type interaction for jump height was observed. However, on average, the children jumped higher in the countermovement jump than in squat jump and DJs (+1.2 and +1.6 cm, P < .001, respectively), with no significant differences between DJs and squat jumps or between DJs when increasing drop heights. Regarding DJs, 59.3% of the participants jumped higher from drop heights of 20 to 40 cm. Conclusions: Children, independent of sex and maturity status, performed best in the countermovement jump, and no performance gain was obtained by dropping from heights of 20 to 70 cm. During maturation, the use of drop heights between 20 and 40 cm may be considered in plyometric training, but the optimum height must be obtained individually.

Birat, Sebillaud, Bourdier, Doré, Duché, and Ratel are with AME2P, Université Clermont Auvergne, Clermont-Ferrand, France. Blazevich is with the Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia. Patikas is with the Department of Physical Education and Sport Science, School of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece. Ratel is also with UFR STAPS—Laboratoire AME2P, Université Clermont Auvergne, Clermont-Ferrand, France.

Ratel (Sebastien.RATEL@uca.fr) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Attia A, Dhahbi W, Chaouachi A, Padulo J, Wong DP, Chamari K. Measurement errors when estimating the vertical jump height with flight time using photocell devices: the example of Optojump. Biol Sport. 2017;1(1):6370. PubMed ID: 28416900 doi:10.5114/biolsport.2017.63735

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Bassa EI, Patikas DA, Panagiotidou AI, Papadopoulou SD, Pylianidis TC, Kotzamanidis CM. The effect of dropping height on jumping performance in trained and untrained prepubertal boys and girls. J Strength Cond Res. 2012;26(8):225864. PubMed ID: 22027856 doi:10.1519/JSC.0b013e31823c4172

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bobbert MF, Huijing PA, van Ingen Schenau GJ. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping. Med Sci Sports Exerc. 1987;19(4):33946. PubMed ID: 3657482

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Cohen J. Statistical Power Analysis for Behavioral Sciences. Cambridge: Academic Press; 1969.

  • 5.

    Difiori JP. Overuse injuries in children and adolescents. Phys Sportsmed. 1999;27(1):7589. PubMed ID: 20086672 doi:10.3810/psm.1999.01.652

  • 6.

    Kluka V, Martin V, Vicencio SG, et al. Effect of muscle length on voluntary activation of the plantar flexors in boys and men. Eur J Appl Physiol. 2016;116(5):104351. PubMed ID: 27032806 doi:10.1007/s00421-016-3362-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kluka V, Martin V, Vicencio SG, et al. Effect of muscle length on voluntary activation level in children and adults. Med Sci Sports Exerc. 2015;47(4):71824. PubMed ID: 25083726 doi:10.1249/MSS.0000000000000463

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Komi PV, Bosco C. Utilization of stored elastic energy in leg extensor muscles by men and women. Med Sci Sports. 1978;10(4):2615. PubMed ID: 750844

  • 9.

    Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med. 2016;15(2):15563. PubMed ID: 27330520 doi:10.1016/j.jcm.2016.02.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Korff T, Horne SL, Cullen SJ, Blazevich AJ. Development of lower limb stiffness and its contribution to maximum vertical jumping power during adolescence. J Exp Biol. 2009;212(Pt 22):373742. PubMed ID: 19880736 doi:10.1242/jeb.033191

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kubo K, Kanehisa H, Kawakami Y, Fukanaga T. Growth changes in the elastic properties of human tendon structures. Int J Sports Med. 2001;22(2):13843. PubMed ID: 11281617 doi:10.1055/s-2001-11337

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Lambertz D, Mora I, Grosset JF, Perot C. Evaluation of musculotendinous stiffness in pre-pubertal children and adults, taking into account muscle activity. J Appl Physiol. 2003;95(1):6472. doi:10.1152/japplphysiol.00885.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Latorre Roman PA, Villar Macias FJ, Garcia Pinillos F. Effects of a contrast training programme on jumping, sprinting and agility performance of prepubertal basketball players. J Sports Sci. 2018;36(7):8028. PubMed ID: 28636435 doi:10.1080/02640414.2017.1340662

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Lazaridis S, Bassa E, Patikas D, Giakas G, Gollhofer A, Kotzamanidis C. Neuromuscular differences between prepubescents boys and adult men during drop jump. Eur J Appl Physiol. 2010;110(1):6774. PubMed ID: 20397025 doi:10.1007/s00421-010-1452-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Lazaridis SN, Bassa EI, Patikas D, Hatzikotoulas K, Lazaridis FK, Kotzamanidis CM. Biomechanical comparison in different jumping tasks between untrained boys and men. Pediatr Exerc Sci. 2013;25(1):10113. PubMed ID: 23406698 doi:10.1123/pes.25.1.101

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Leukel C, Gollhofer A, Keller M, Taube W. Phase- and task-specific modulation of soleus H-reflexes during drop-jumps and landings. Exp Brain Res. 2008;190(1):719. PubMed ID: 18553072 doi:10.1007/s00221-008-1450-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Martin RJ, Dore E, Hautier CA, Van Praagh E, Bedu M. Short-term peak power changes in adolescents of similar anthropometric characteristics. Med Sci Sports Exerc. 2003;35(8):143640. PubMed ID: 12900701 doi:10.1249/01.MSS.0000079074.47756.AB

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):68994. PubMed ID: 11932580

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Pääsuke M, Ereline J, Gapeyeva H. Knee extensor muscle strength and vertical jumping performance characteristics in pre- and post-pubertal boys. Pediatr Exerc Sci. 2001;13:609. doi:10.1123/pes.13.1.60

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Peng HT. Changes in biomechanical properties during drop jumps of incremental height. J Strength Cond Res. 2011;25(9):25108. PubMed ID: 21869631 doi:10.1519/JSC.0b013e318201bcb3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Prieske O, Chaabene H, Puta C, Behm DG, Busch D, Granacher U. Effects of drop height on jump performance in male and female elite adolescent handball players. Int J Sports Physiol Perform. 2019;14(5):67480. PubMed ID: 30427227 doi:10.1123/ijspp.2018-0482

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Radnor JM, Oliver JL, Waugh CM, Myer GD, Moore IS, Lloyd RS. The influence of growth and maturation on stretch-shortening cycle function in youth. Sports Med. 2018;48(1):5771. PubMed ID: 28900862 doi:10.1007/s40279-017-0785-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Ramirez-Campillo R, Burgos CH, Henriquez-Olguin C, et al. Effect of unilateral, bilateral, and combined plyometric training on explosive and endurance performance of young soccer players. J Strength Cond Res. 2015;29(5):131728. PubMed ID: 25474338 doi:10.1519/JSC.0000000000000762

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Read PJ, Jimenez P, Oliver JL, Lloyd RS. Injury prevention in male youth soccer: current practices and perceptions of practitioners working at elite English academies. J Sports Sci. 2018;36(12):142331. PubMed ID: 29019743 doi:10.1080/02640414.2017.1389515

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Sayer TA, Hinman RS, Paterson KL, et al. Differences in hip and knee landing moments across female pubertal development. Med Sci Sports Exerc. 2019;51(1):12331. PubMed ID: 30157108

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Suchomel TJ, Bailey CA, Sole CJ, Grazer JL, Beckham GK. Using reactive strength index-modified as an explosive performance measurement tool in Division I athletes. J Strength Cond Res. 2015;29(4):899904. PubMed ID: 25426515 doi:10.1519/JSC.0000000000000743

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Taube W, Leukel C, Schubert M, Gruber M, Rantalainen T, Gollhofer A. Differential modulation of spinal and corticospinal excitability during drop jumps. J Neurophysiol. 2008;99(3):124352. PubMed ID: 18199811 doi:10.1152/jn.01118.2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Walshe AD, Wilson GJ. The influence of musculotendinous stiffness on drop jump performance. Can J Appl Physiol. 1997;22(2):11732. PubMed ID: 9140666 doi:10.1139/h97-010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Waugh CM, Korff T, Blazevich AJ. Developmental differences in dynamic muscle-tendon behaviour: implications for movement efficiency. J Exp Biol. 2017;220(Pt 7):128794. PubMed ID: 28108669 doi:10.1242/jeb.127951

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Weber ML, Lam KC, McLeod TCV. The effectiveness of injury prevention programs for youth and adolescent athletes. Int J Athl Ther Train. 2016;21(2):2531. doi:10.1123/ijatt.2015-0034

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3463 921 29
Full Text Views 73 8 0
PDF Downloads 59 9 0