An 8-Year Longitudinal Analysis of Physical Activity and Bone Strength From Adolescence to Emerging Adulthood: The Iowa Bone Development Study

in Pediatric Exercise Science
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $68.00

1 year subscription

USD  $90.00

Student 2 year subscription

USD  $129.00

2 year subscription

USD  $168.00

Purpose: Most pediatric physical activity and bone health research has focused on the period immediately around puberty; few have addressed bone structural strength outcomes. This study assessed the magnitude and consistency of the longitudinal relationships between device-measured vigorous-intensity physical activity (VPA) and structural bone strength outcomes across adolescence to emerging adulthood. Methods: Participants with 3 to 5 bone scans between the age of 11 and 19 years were studied (N = 439, 220 females, 1838 records). Dual-energy X-ray absorptiometry scans of the hip (hip structural analysis) and peripheral quantitative computed tomography scans of the tibia were obtained. Outcomes included femoral neck section modulus, femoral neck cross-sectional area, tibial Bone Strength Index, and tibial torsion strength (polar Strength Strain Index). Sex-specific bone mixed growth models were developed using biological age (chronological age − age at peak height velocity) as the time variable, and height, weight, and device-measured VPA as time-varying covariates. Models also included the VPA–biological age interaction. Results: Individual-centered VPA and the VPA–biological age interaction were significantly, positively associated (P < .05) with Bone Strength Index, polar Strength Strain Index, section modulus, and cross-sectional area in males and females, indicating accumulative effects of VPA throughout maturation and beyond. Conclusion: Bone remains responsive to the mechanical loading of physical activity throughout adolescence and into emerging adulthood. Attention should be placed on promoting bone-strengthening physical activity after the prepubertal years when adult exercise patterns are likely formed.

Metcalf and Janz are with the Department of Health and Human Physiology, University of Iowa, Iowa City, IA. Letuchy and Janz are with the Department of Epidemiology, University of Iowa, Iowa City, IA. Levy is with the Department of Preventive and Community Dentistry, University of Iowa, Iowa City, IA.

Metcalf (kristen.metcalf@icloud.com) is corresponding author.
  • 1.

    2018 Physical Activity Guidelines Advisory Committee. 2018 Physical Activity Guidelines Advisory Committee Scientific Report. Washington, DC: US Department of Health and Human Services, 2018.

    • Search Google Scholar
    • Export Citation
  • 2.

    Baxter-Jones AD, Faulkner RA, Forwood MR, Mirwald RL, Baily DA. Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res. 2011;26(8):1729–39. PubMed ID: 21520276 doi:10.1002/jbmr.412

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Beck BR. Exercise for bone in childhood—hitting the sweet spot. Pediatr Exerc Sci. 2017;29:440–9. doi:10.1123/pes.2017-0023

  • 4.

    Craigie AM, Lake AA, Kelly SA, Adamson AJ, Mathers JC. Tracking of obesity-related behaviours from childhood to adulthood: a systematic review. Maturitas. 2011;70:266–84. PubMed ID: 21920682 doi:10.1016/j.maturitas.2011.08.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Curran PJ, Bauer DJ. The disaggregation of within-person and between-person effects in longitudinal models of change. Annu Rev Psychol. 2011; 62:583–619. PubMed ID: 19575624 doi:10.1146/annurev.psych.093008.100356

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–65. PubMed ID: 18949660 doi:10.1080/02640410802334196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Francis SL, Morrissey JL, Letuchy EM, Levy SM, Janz KF. Ten-year objective physical activity tracking: Iowa Bone Development Study. Med Sci Sports Exerc. 2013;45(8):1508–14. PubMed ID: 23470296 doi:10.1249/MSS.0b013e31828b2f3a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Gabel L, Macdonald HM, Nettlefold L, McKay HA. Bouts of vigorous physical activity and bone strength accrual during adolescence. Pediatr Exerc Sci. 2017;29(4):465–75. PubMed ID: 28556682 doi:10.1123/pes.2017-0043

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Gabel L, Macdonald HM, Nettlefold L, McKay HA. Physical activity, sedentary time, and bone strength from childhood to early adulthood: a mixed longitudinal HR-pQCT study. J Bone Miner Res. 2017;32(7):1525–36. PubMed ID: 28326606 doi:10.1002/jbmr.3115

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Janz K. Physical activity and bone development during childhood and adolescence. Implications for the prevention of osteoporosis. Minerva Pediatr. 2002;54(2):93–104. PubMed ID: 11981524

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Janz KF, Burns TL, Levy SM, et al. Everyday activity predicts bone geometry in children: the Iowa bone development study. Med Sci Sports Exerc. 2004;36(7):1124–31. PubMed ID: 15235315 doi:10.1249/01.MSS.0000132275.65378.9D

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Janz KF, Burns TL, Torner JC, et al. Physical activity and bone measures in young children: the Iowa bone development study. Pediatrics. 2001;107(6):1387–93. PubMed ID: 11389262 doi:10.1542/peds.107.6.1387

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Janz KF, Letuchy EM, Burns TL, Eichenberger Gilmore JM, Torner JC, Levy SM. Objectively measured physical activity trajectories predict adolescent bone strength: Iowa Bone Development Study. Br J Sports Med. 2014;48:1032–6. PubMed ID: 24837241 doi:10.1136/bjsports-2014-093574

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Kalkwarf HJ, Laor T, Bean JA. Fracture risk in children with a forearm injury is associated with volumetric bone density and cortical area (by peripheral QCT) and areal bone density (by DXA). Osteoporos Int. 2011;22(2): 607–16. PubMed ID: 20571770 doi:10.1007/s00198-010-1333-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Kozey SL, Staudenmayer JW, Troiano RP, Freedson PS. Comparison of the ActiGraph 7164 and the ActiGraph GT1M during self-paced locomotion. Med Sci Sports Exerc. 2010;42(5):971–6. PubMed ID: 19997000 doi:10.1249/MSS.0b013e3181c29e90

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Levy SM, Kiritsy MC, Slager SL, Warren JJ. Patterns of dietary fluoride supplement use during infancy. J Public Health Dent. 1998;58(3):228–33. PubMed ID: 10101699 doi:10.1111/j.1752-7325.1998.tb02998.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):689–94. PubMed ID: 11932580

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Nikander R, Sievanen H, Heinonen A, Daly R, Uusi-Rasi K, Kannus P. Targeted exercise against osteoporosis: a systematic review and meta-analysis for optimizing bone strength throughout life. BMC Med. 2010;8(1):47. doi:10.1186/1741-7015-8-47

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Robusto KM, Trost SG. Comparison of three generations of ActiGraph activity monitors in children and adolescents. J Sports Sci. 2012;30:1429–35. PubMed ID: 22857599 doi:10.1080/02640414.2012.710761

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Sayers A, Mattocks C, Deere K, Ness A, RIddoch C, Tobias JH. Habitual levels of vigorous, but not moderate or light, physical activity is positively related to cortical bone mass in adolescents. J Clin Endocrinol Metab. 2011;96(5): E793–802. PubMed ID: 21325463 doi:10.1210/jc.2010-2550

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Tan VPS, Macdonald HM, Kim S, et al. Influence of physical activity on bone strength in children and adolescents: a systematic review and narrative synthesis. J Bone Miner Res. 2014;29(10):2161–81. PubMed ID: 24737388 doi:10.1002/jbmr.2254

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Weaver CM, Gordon CM, Janz KF. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int. 2016;27(4):1281–386. PubMed ID: 26856587 doi:10.1007/s00198-015-3440-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 226 226 171
Full Text Views 16 16 12
PDF Downloads 6 6 3