The Influence of Maturity Status on Muscle Architecture in School-Aged Boys

in Pediatric Exercise Science
View More View Less
  • 1 Cardiff Metropolitan University
  • 2 AUT University
  • 3 Vancouver Coastal Health Research Institute
  • 4 University of British Columbia
  • 5 Cincinnati Children’s Hospital Medical Center
  • 6 University of Cincinnati
  • 7 The Micheli Center for Sports Injury Prevention
  • 8 Waikato Institute of Technology
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $69.00

1 year online subscription

USD  $92.00

Student 2 year online subscription

USD  $131.00

2 year online subscription

USD  $175.00

Purpose: To determine the differences in muscle architecture of the lower limb in pre-peak height velocity (PHV), circa-PHV, and post-PHV boys. Method: Muscle architecture variables from both the gastrocnemius medialis (GM) and vastus lateralis (VL) were derived from ultrasonographic images in 126 school-aged boys. One-way analysis of variance using Bonferroni post hoc comparisons was employed to determine between-group differences, and effect sizes were calculated to establish the magnitude of these differences. Results: All muscle architecture variables showed significant small to large increases from pre-PHV to post-PHV, excluding GM fascicle length (d = 0.59–1.39; P < .05). More discrete between-group differences were evident as GM and VL muscle thickness, and physiological thickness significantly increased between pre-PHV and circa-PHV (d > 0.57; P < .05); however, only the VL muscle thickness and physiological thickness increased from circa-PHV to post-PHV (d = 0.68; P < .05). The post-PHV group also showed larger GM pennation angles than the circa-PHV group (d = 0.59; P < .05). Conclusion: The combined results showed that maturation is associated with changes in muscle morphology. These data quantify that the maturity-related changes in muscle architecture variables provide a reference to differentiate between training-induced adaptations versus changes associated with normal growth and maturation.

Radnor, Oliver, and Lloyd are with the Youth Physical Development Centre, School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom. Oliver and Lloyd are also with the Sport Performance Research Institute New Zealand, AUT University, Auckland, New Zealand. Waugh is with the Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada; and the Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada. Myer is with the Division of Sports Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA; the Department of Pediatrics and Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; and The Micheli Center for Sports Injury Prevention, Boston, MA, USA. Lloyd is also with the Centre for Sport Science & Human Performance, Waikato Institute of Technology, Hamilton, New Zealand.

Radnor (jradnor@cardiffmet.ac.uk) is corresponding author.
  • 1.

    Baxter-Jones AD, Eisenmann JC, Sherar LB. Controlling for maturation in pediatric exercise science. Pediatr Exerc Sci. 2005;17:1822. doi:10.1123/pes.17.1.18

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Bénard MR, Harlaar J, Becher JG, Huijing PA, Jaspers RT. Effects of growth on geometry of gastrocnemius muscle in children: a three-dimensional ultrasound analysis. J Anat. 2011;219(3):388402. doi:10.1111/j.1469-7580.2011.01402.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Binzoni T, Bianchi S, Hanquinet S, Kaelin A, Sayegh Y, Dumont M, Jéquier S. Human gastrocnemius medialis pennation angle as a function of age from newborn to the elderly. J Physiol Anthropol Appl Human Sci. 2001;20(5):2938. PubMed ID: 11759268 doi:10.2114/jpa.20.293

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Blazevich AJ. Effects of physical training and detraining, immobilisation, growth and aging on human fascicle geometry. Sports Med. 2006;36(12):100317. PubMed ID: 17123325 doi:10.2165/00007256-200636120-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Blazevich AJ, Gill ND, Bronks R, Newton RU. Training-specific muscle architecture adaptation after 5-wk training in athletes. Med Sci Sports Exerc. 2003;35(12):201322. PubMed ID: 14652496 doi:10.1249/01.MSS.0000099092.83611.20

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Blazevich AJ, Giorgi A. Effect of testosterone administration and weight training on muscle architecture. Med Sci Sports Exerc. 2001;33(10):6. doi:10.1097/00005768-200110000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Blazevich AJ, Sharp NC. Understanding muscle architectural adaptation: macro- and micro-level research. Cells Tissues Organs. 2005;181(1):110. PubMed ID: 16439814 doi:10.1159/000089964

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bobbert MF. Effect of unloading and loading on power in simulated countermovement and squat jumps. Med Sci Sports Exerc. 2014;46(6):117684. PubMed ID: 24247198 doi:10.1249/MSS.0000000000000216

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Dotan R, Mitchell C, Cohen R, Klentrou P, Gabriel D, Falk B. Child-adult differences in muscle activation—a review. Pediatr Exerc Sci. 2012;24(1):221. PubMed ID: 22433260 doi:10.1123/pes.24.1.2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Falk B, Usselman C, Dotan R, Brunton L, Klentrou P, Shaw J, Gabriel D. Child-adult differences in muscle strength and activation pattern during isometric elbow flexion and extension. Appl Physiol Nutr Metab. 2009;34(4):60915. PubMed ID: 19767795 doi:10.1139/H09-020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Faul F, Erdfelder E. Gpower: A Priori, Post-Hoc and Compromise Power Analyses [software]. Bonn, Germany: Bonn University; 1992.

  • 12.

    Hopkins WG. Reliability from consecutive pairs of trials (Excel spreadsheet). In: A New View of Statistics. sportsci.org. Internet Society for Sport Science; 2000sportsci.org/resource/stats/xrely.xls. Accessed November 2017.

    • Search Google Scholar
    • Export Citation
  • 13.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:312. doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hume P, Russell K. Overuse injuries and injury prevention strategies for youths. In: Lloyd RS, Oliver JL, editors. Strength and Conditioning for Young Athletes: Science and Application. London, UK: Routledge; 2014, pp. 20012.

    • Search Google Scholar
    • Export Citation
  • 15.

    Kannas T, Kellis E, Arampatzi F, Saez de Villarreal E. Medial gastrocnemius architectural properties during isometric contractions in boys and men. Pediatr Exerc Sci. 2010;22:15264. PubMed ID: 20332547 doi:10.1123/pes.22.1.152

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Kawakami Y, Abe T, Kuno S-Y, Fukunaga T. Training-induced changes in muscle architecture and specific tension. Eur J Appl Physiol Occup Physiol. 1995;72(1–2):3743. PubMed ID: 8789568 doi:10.1007/BF00964112

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Koziel SM, Malina RM. Modified maturity offset prediction equations: validation in independent longitudinal samples of boys and girls. Sports Med. 2018;48(1):22136. PubMed ID: 28608181

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kubo K, Kanehisa H, Kawakami Y, Fukunaga T. Growth changes in the elastic properties of human tendon structures. Orthop Clin Sci. 2001;22:13843.

    • Search Google Scholar
    • Export Citation
  • 19.

    Kubo K, Teshima T, Hirose N, Tsunoda N. A cross-sectional study of the plantar flexor muscle and tendon during growth. Int J Sports Med. 2014;35(10):82834. PubMed ID: 24577863 doi:10.1055/s-0034-1367011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kubo K, Teshima T, Hirose N, Tsunoda N. Growth changes in morphological and mechanical properties of human patellar tendon in vivo. J Appl Biomech. 2014;30(3):41522. PubMed ID: 24610231 doi:10.1123/jab.2013-0220

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kubo K, Teshima T, Ikebukuro T, Hirose N, Tsunoda N. Tendon properties and muscle architecture for knee extensors and plantar flexors in boys and men. Clin Biomech. 2014;29(5):50611. doi:10.1016/j.clinbiomech.2014.04.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Lieber RL, Fridén J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 2000;23:164766. PubMed ID: 11054744 doi:10.1002/1097-4598(200011)23:11<1647::AID-MUS1>3.0.CO;2-M

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lloyd RS, Oliver JL, Hughes MG, Williams CA. The influence of chronological age on periods of accelerated adaptation of stretch-shortening cycle performance in pre and postpubescent boys. J Strength Cond Res. 2011;25(7):188997. PubMed ID: 21499135 doi:10.1519/JSC.0b013e3181e7faa8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Malina RM, Bouchard C, Bar-Or O. Growth, Maturation and Physical Activity. 2nd ed. Champaign, IL: Human Kinetics; 2004.

  • 25.

    McMahon JJ, Stapley J, Suchomel TJ, Comfort P. Relationships between lower body muscle structure and isometric mid-thigh pull peak force. J Train. 2015;4(2):438. doi:10.17338/trainology.4.2_43

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Meyers RW, Oliver JL, Hughes MG, Cronin JB, Lloyd RS. Maximal sprint speed in boys of increasing maturity. Pediatr Exerc Sci. 2015;27(1):8594. PubMed ID: 25054903 doi:10.1123/pes.2013-0096

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Meylan C, Cronin J, Oliver J, Hughes MG. Talent identification in soccer the role of maturity status on physical, physiological and technical characteristics. Int J Sports Sci Coach. 2010;5(4):57192. doi:10.1260/1747-9541.5.4.571

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Meylan CM, Cronin J, Hopkins WG, Oliver J. Adjustment of measures of strength and power in youth male athletes differing in body mass and maturation. Pediatr Exerc Sci. 2014;26(1):418. PubMed ID: 24019030 doi:10.1123/pes.2013-0029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen G. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34:68994. PubMed ID: 11932580

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    O’Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN. In vivo measurements of muscle specific tension in adults and children. Exp Physiol. 2010;95(1):20210. doi:10.1113/expphysiol.2009.048967

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    O’Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN. Muscle-tendon structure and dimensions in adults and children. J Anat. 2010;216(5):63142. doi:10.1111/j.1469-7580.2010.01218.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    O’Donoghue P. Statistics for Sport and Exercise Studies: An Introduction. London, UK: Routledge; 2012.

  • 33.

    Prado CM, Heymsfield SB. Lean tissue imaging: a new era for nutritional assessment and intervention. J Parenter Enteral Nutr. 2014;38(8):94053. doi:10.1177/0148607114550189

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Secomb JL, Lundgren LE, Farley OR, Tran TT, Nimphius S, Sheppard JM. Relationships between lower-body muscle structure and lower-body strength, power, and muscle-tendon complex stiffness. J Strength Cond Res. 2015;29(8):22218. PubMed ID: 25647652 doi:10.1519/JSC.0000000000000858

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Tonson A, Ratel S, Le Fur Y, Cozzone P, Bendahan D. Effect of maturation on the relationship between muscle size and force production. Med Sci Sports Exerc. 2008;40(5):91825. PubMed ID: 18408605 doi:10.1249/MSS.0b013e3181641bed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Viru A, Loko J, Harro M, Volver A, Laaneots L, Viru M. Critical periods in the development of performance capacity during childhood and adolescence. Eur J Phys Educ. 1999;4(1):75119. doi:10.1080/1740898990040106

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Wakeling JM, Blake OM, Wong I, Rana M, Lee SS. Movement mechanics as a determinate of muscle structure, recruitment and coordination. Philos Trans R Soc Lond B Biol Sci. 2011;366(1570):155464. PubMed ID: 21502126 doi:10.1098/rstb.2010.0294

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Xu L, Nicholson P, Wang Q, Alen M, Cheng S. Bone and muscle development during puberty in girls: a seven-year longitudinal study. J Bone Miner Res. 2009;24(10):16938. PubMed ID: 19419294 doi:10.1359/jbmr.090405

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 314 314 54
Full Text Views 23 23 1
PDF Downloads 25 25 2