Vitamin D and Cortisol as Moderators of the Relationship Between Testosterone and Exercise Performance in Adolescent Male Athletes

in Pediatric Exercise Science
View More View Less
  • 1 Institute of Sport—National Research Institute
  • 2 University of New England
  • 3 Imperial College
  • 4 University of North Dakota
  • 5 Central Institute for Labour Protection—National Research Institute
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $69.00

1 year online subscription

USD  $92.00

Student 2 year online subscription

USD  $131.00

2 year online subscription

USD  $175.00

Purpose: Reported associations between vitamin 25(OH)D and exercise performance are equivocal, perhaps due to complex interplay with cortisol and testosterone. In this study, the authors investigated serum 25(OH)D and cortisol as moderators of the testosterone relationship with exercise performance in adolescent male athletes. Methods: A total of 88 ice hockey players were assessed for serum 25(OH)D, cortisol, testosterone, body composition, and exercise performance, based on countermovement jump power and muscle torque. The authors tested independent relationships, before examining complex interactions via moderated regression analyses. Results: Most athletes (62.5%) exhibited a suboptimal (20–30 ng·mL−1) serum 25(OH)D concentration, whereas 9.1% of athletes were deficient (<20 ng·mL−1). Serum 25(OH)D was not related to performance when controlling for testing year, age, and fat mass. Further modeling revealed a significant hormonal interaction. Specifically, in low-25(OH)D subjects, testosterone predicted countermovement jump power at a high (β = 7.10, effect size = .43, P < .01), but not low (β = −3.32, effect size = −.20, P = .09), cortisol concentration. Conclusions: Serum 25(OH)D was a poor predictor of exercise performance, but it did moderate (with cortisol) the testosterone link to muscle power. Notably, this relationship emerged among individuals with a 25(OH)D concentration (∼22 ng·mL−1) approaching the deficiency cutoff. Viewing 25(OH)D as a moderating, rather than dose responsive, variable could help explain equivocal cross-sectional associations.

Crewther, Starczewski, and Gorski are with the Institute of Sport—National Research Institute, Warsaw, Poland. Cook is with the School of Science and Technology, University of New England, Armidale, NSW, Australia; and the Hamlyn Centre, Imperial College, London, United Kingdom. Fitzgerald is with the Department of Education, Health and Behavior Studies, University of North Dakota, Grand Forks, ND, USA. Orysiak is with the Department of Ergonomics, Central Institute for Labour Protection—National Research Institute (CIOP-PIB), Warsaw, Poland.

Orysiak (joory@ciop.pl) is corresponding author.

Supplementary Materials

    • Supplementary Table S1 (PDF 103 KB)
    • Supplementary Table S2 (PDF 238 KB)
  • 1.

    Backx E, van der Avoort C, Tieland M, et al. Seasonal variation in vitamin D status in elite athletes: a longitudinal study. Int J Sport Nutr Exerc Metab. 2017;27(1):610. PubMed ID: 27710147 doi:10.1123/ijsnem.2016-0177

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Boisen IM, Bøllehuus Hansen L, Mortensen LJ, Lanske B, Juul A, Blomberg JM. Possible influence of vitamin D on male reproduction. J Steroid Biochem. 2017;173:21522. doi:10.1016/j.jsbmb.2016.09.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Burnstein KL, Maiorino CA, Dai JL, Cameron DJ. Androgen and glucocorticoid regulation of androgen receptor cDNA expression. Mol Cell Endocrinol. 1995;115(2):17786. doi:10.1016/0303-7207(95)03688-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Carson EL, Pourshahidi LK, Hill TR, et al. Vitamin D, muscle function, and cardiorespiratory fitness in adolescents from the young hearts study. J Clin Endocrinol Metab. 2015;100(12):46218. PubMed ID: 26485221 doi:10.1210/jc.2015-2956

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Chlebna-Sokół D, Konstantynowicz J, Abramowicz P, et al. Evidence of a significant vitamin D deficiency among 9-13-year-old Polish children: results of a multicentre study. Eur J Nutr. 2019;58(5):202936. doi:10.1007/s00394-018-1756-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Close GL, Leckey J, Patterson M, et al. The effects of vitamin D3 supplementation on serum total 25[OH]D concentration and physical performance: a randomised dose-response study. Br J Sport Med. 2013;47(11):6926. PubMed ID: 29936536 doi:10.1136/bjsports-2012-091735

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. New York, NY: Routledge Academic; 1988.

  • 8.

    Crewther BT, Cook C, Cardinale M, Weatherby RP, Lowe T. Two emerging concepts for elite athletes: the short-term effects of testosterone and cortisol on the neuromuscular system and the dose-response training role of these endogenous hormones. Sports Med. 2011;41(2):10323. PubMed ID: 21244104 doi:10.2165/11539170-000000000-00000.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Crewther BT, Obmiński Z, Cook CJ. Serum cortisol as a moderator of the relationship between serum testosterone and Olympic weightlifting performance in real and simulated competitions. Biol Sport. 2018;35(3):21521. PubMed ID: 30449938 doi:10.5114/biolsport.2018.74632

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Crewther BT, Thomas AG, Stewart-Williams S, Kilduff LP, Cook CJ. Is salivary cortisol moderating the relationship between salivary testosterone and hand-grip strength in healthy men? Eur J Sport Sci. 2017;17(2):18894. PubMed ID: 27562719 doi:10.1080/17461391.2016.1220628

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Denson TF, Ronay R, von Hippel W, Schira MM. Endogenous testosterone and cortisol modulate neural responses during induced anger control. Soc Neurosci. 2013;8(2):16577. PubMed ID: 22263640 doi:10.1080/17470919.2012.655425

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Dubnov-Raz G, Livne N, Raz R, Cohen AH, Constantini NW. Vitamin D supplementation and physical performance in adolescent swimmers. Int J Sport Nutr Exerc Metab. 2015;25(4):31725. PubMed ID: 25203157 doi:10.1123/ijsnem.2014-0180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Dubnov-Raz G, Livne N, Raz R, Rogel D, Cohen AH, Constantini NW. Vitamin D concentrations and physical performance in competitive adolescent swimmers. Pediatr Exerc Sci. 2014;26(1):6470. PubMed ID: 24018897 doi:10.1123/pes.2013-0034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Fitzgerald JS, Orysiak J, Wilson PB, Mazur-Różycka J, Obminski Z. Association between vitamin D status and testosterone and cortisol in ice hockey players. Biol Sport. 2018;35(3):20713. PubMed ID: 30449937 doi:10.5114/biolsport.2018.74631

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Fitzgerald JS, Peterson BJ, Warpeha JM, Johnson SC, Ingraham SJ. Association between Vitamin D status and maximal-intensity exercise performance in junior and collegiate hockey players. J Strength Cond Res. 2015;29(9):251321. PubMed ID: 26313575 doi:10.1519/JSC.0000000000000887

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Gajewski J, Buśko K, Mazur J, Michalski R. Application of allometry for determination of strength profile in young female athletes from different sports. Biol Sport. 2011;28(4):23943. doi:10.5604/965479

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Gajewski J, Michalski R, Buśko K, Mazur-Różycka J, Staniak Z. Countermovement depth—a variable which clarifies the relationship between the maximum power output and height of a vertical jump. Acta Bioeng Biomech. 2018;20(1):12734. PubMed ID: 29658525

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Geiker N, Hansen M, Jakobsen J, et al. Vitamin D status and muscle function among adolescent and young swimmers. Int J Sport Nutr Exerc Metab. 2017;27(5):399407. PubMed ID: 28556690 doi:10.1123/ijsnem.2016-0248

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Girgis CM, Clifton-Bligh RJ, Hamrick MW, Holick MF, Gunton JE. The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr Rev. 2013;34(1):3383. PubMed ID: 23169676 doi:10.1210/er.2012-1012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Graves JE, Kanaley JA, Garzarella L, Pollock ML. Anthropometry and body composition measurement. In: Maud PJ, Foster C, eds. Physiological Assessment of Human Fitness. Champaign, IL: Human Kinetics; 2006:185225.

    • Search Google Scholar
    • Export Citation
  • 21.

    Hamilton B, Whiteley R, Farooq A, Chalabi H. Vitamin D concentration in 342 professional football players and association with lower limb isokinetic function. J Sci Med Sport. 2014;17(1):13943. PubMed ID: 23623203 doi:10.1016/j.jsams.2013.03.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hildebrand RA, Miller B, Warren A, Hildebrand D, Smith BJ. Compromised vitamin D status negatively affects muscular strength and power of collegiate athletes. Int J Sport Nutr Exerc Metab. 2016;26(6):55864. PubMed ID: 27097322 doi:10.1123/ijsnem.2016-0052

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Jastrzębska M, Kaczmarczyk M, Jastrzębski Z. Effect of vitamin D supplementation on training adaptation in well-trained soccer players. J Strength Cond Res. 2016;30(9):264855. PubMed ID: 26808860 doi:10.1519/JSC.0000000000001337

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Jung HC, Seo MW, Lee S, Jung SW, Song JK. Correcting vitamin D insufficiency improves some but not all aspects of physical performance during winter training in taekwondo athletes. Int J Sport Nutr Exerc Metab. 2018;28(6):63543. PubMed ID: 29722590 doi:10.1123/ijsnem.2017-0412

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Książek A, Dziubek W, Pietraszewska J, Słowińska-Lisowska M. Relationship between 25(OH)D levels and athletic performance in elite Polish judoists. Biol Sport. 2018;35(2):1916. PubMed ID: 30455548

    • Search Google Scholar
    • Export Citation
  • 26.

    Książek A, Zagrodna A, Dziubek W, Pietraszewski B, Ochmann B, Słowińska-Lisowska M. 25(OH)D3 levels relative to muscle strength and maximum oxygen uptake in athletes. J Hum Kinet. 2016;50:717. doi:10.1515/hukin-2015-0144

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Mehta PH, Josephs RA. Testosterone and cortisol jointly regulate dominance: evidence for a dual-hormone hypothesis. Horm Behav. 2010;58(5):898906. doi:10.1016/j.yhbeh.2010.08.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Orysiak J, Mazur-Rozycka J, Fitzgerald J, Starczewski M, Malczewska-Lenczowska J, Busko K. Vitamin D status and its relation to exercise performance and iron status in young ice hockey players. PLoS One. 2018;13(4):e0195284. PubMed ID: 29630669 doi:10.1371/journal.pone.0195284

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Owens DJ, Allison R, Close GL. Vitamin D and the athlete: current perspectives and new challenges. Sports Med. 2018;48(suppl 1):316. doi:10.1007/s40279-017-0841-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Ponzi D, Zilioli S, Mehta P, Maslov A, Watson NV. Social network centrality and hormones: the interaction of testosterone and cortisol. Psychoneuroendocrinology. 2016;68:613. PubMed ID: 26930262 doi:10.1016/j.psyneuen.2016.02.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Popma A, Vermeiren R, Geluk CA, et al. Cortisol moderates the relationship between testosterone and aggression in delinquent male adolescents. Biol Psychiatry. 2007;61(3):40511. PubMed ID: 16950214 doi:10.1016/j.biopsych.2006.06.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2013. http://www.R-project.org/

    • Search Google Scholar
    • Export Citation
  • 33.

    Rolf L, Damoiseaux J, Huitinga I, et al. Stress-axis regulation by vitamin D3 in multiple sclerosis. Front Neurol. 2018;9:263. doi:10.3389/fneur.2018.00263

  • 34.

    Rosnow RL, Rosenthal R, and Rubin DB. Contrasts and correlations in effect-size estimation. Psychol Sci. 2000;11(6):44653. PubMed ID: 11202488 doi:10.1111/1467-9280.00287

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Rusińska A, Płudowski P, Walczak M, et al. Vitamin D supplementation guidelines for general population and groups at risk of vitamin D deficiency in Poland-recommendations of the Polish Society of Pediatric Endocrinology and Diabetes and the expert panel with participation of National Specialist Consultants and Representatives of Scientific Societies-2018 update. Front Endocrinol. 2018;9:246. doi:10.3389/fendo.2018.00246

    • Search Google Scholar
    • Export Citation
  • 36.

    Saha S, Goswami R, Ramakrishnan L, et al. Vitamin D and calcium supplementation, skeletal muscle strength and serum testosterone in young healthy adult males: randomized control trial. Clin Endocrinol. 2018;88(2):21726. doi:10.1111/cen.13507

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Todd JJ, McSorley EM, Pourshahidi LK, et al. Vitamin D3 supplementation using an oral spray solution resolves deficiency but has no effect on VO2 max in Gaelic footballers: results from a randomised, double-blind, placebo-controlled trial. Eur J Nutr. 2017;56(4):157787. PubMed ID: 27015912 doi:10.1007/s00394-016-1202-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Wierzbicka JM, Żmijewski MA, Piotrowska A, et al. Bioactive forms of vitamin D selectively stimulate the skin analog of the hypothalamus-pituitary-adrenal axis in human epidermal keratinocytes. Mol Cell Endocrinol. 2016;437:31222. PubMed ID: 27524410 doi:10.1016/j.mce.2016.08.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Wyon MA, Wolman R, Nevill AM, et al. Acute effects of vitamin D3 supplementation on muscle strength in judoka athletes: a randomized placebo-controlled, double-blind trial. Clin J Sports Med. 2016;26(4):27984. doi:10.1097/JSM.0000000000000264

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1322 1322 131
Full Text Views 37 37 12
PDF Downloads 19 19 8