Age-Related Differences in Perceived Exertion While Walking and Running Near the Preferred Transition Speed

in Pediatric Exercise Science
View More View Less
  • 1 Massey University
  • 2 Medical Research Institute of New Zealand
  • 3 Seattle University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $69.00

1 year online subscription

USD  $92.00

Student 2 year online subscription

USD  $131.00

2 year online subscription

USD  $175.00

Purpose: To investigate whether youth and adults can perceive differences in exertion between walking and running at speeds near the preferred transition speed (PTS) and if there are age-related differences in these perceptions. Methods: A total of 49 youth (10–12 y, n = 21; 13–14 y, n = 10; 15–17 y, n = 18) and 13 adults (19–29 y) completed a walk-to-run transition protocol to determine PTS and peak oxygen uptake. The participants walked and ran on a treadmill at 5 speeds (PTS–0.28 m·s−1, PTS–0.14 m·s−1, PTS, PTS+0.14 m·s−1, PTS+0.28 m·s−1) and rated perceived exertion using the OMNI Perceived Exertion (OMNI-RPE) scale. Oxygen consumption was measured during the walk-to-run transition protocol to obtain the relative intensity (percentage of peak oxygen uptake) at PTS. OMNI-RPE scores at all speeds and percentage of peak oxygen uptake at PTS were compared between age groups. Results: The 10- to 12-year-olds transitioned at a higher percentage of peak oxygen uptake than adults (64.54 [10.18] vs 52.22 [11.40], respectively; P = .035). The 10- to 14-year-olds generally reported higher OMNI-RPE scores than the 15- to 17-year-olds and adults (P < .050). In addition, the 10- to 14-year-olds failed to distinguish differences in OMNI-RPE between walking and running at PTS and PTS+0.14 m·s−1. Conclusions: Children aged 10–14 years are less able to distinguish whether walking or running requires less effort at speeds near the PTS compared with adults. The inability to judge which gait mode is less demanding could hinder the ability to minimize locomotive demands.

Kung and Shultz are with the School of Sport, Exercise and Nutrition, Massey University, Wellington, New Zealand. Kung is also with the Medical Research Institute of New Zealand, Wellington, New Zealand. Fink is with the School of Sport, Exercise and Nutrition, Massey University, Palmerston North, New Zealand. Legg is with the Centre for Ergonomics and Occupational Health and Safety, Massey University, Palmerston North, New Zealand. Ali is with the School of Sport, Exercise and Nutrition, Massey University, Albany, New Zealand. Shultz is also with the Department of Kinesiology, Seattle University, Seattle, WA, USA.

Kung (stacey.kung@mrinz.ac.nz) is corresponding author.

Supplementary Materials

    • Supplementary Table 1 (PDF 480 KB)
  • 1.

    Abdolvahab M. Gait transition dynamics are modulated by concurrent cognitive activity. Atten Percept Psychophys. 2015;77(7):25026. PubMed ID: 26092304 doi:10.3758/s13414-015-0934-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bar-Or O. Rating of perceived exertion in children and adolescents: clinical aspects. In: Ljunggren G, Dornic S, eds. Psychophysics in Action. Berlin, Heidelberg: Springer Berlin Heidelberg; 1989: 10513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Bartlett JL, Kram R. Changing the demand on specific muscle groups affects the walk-run transition speed. J Exp Biol. 2008;211(8):12818. PubMed ID: 18375853 doi:10.1242/jeb.011932

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Cech D, Martin S. Functional Movement Development Across the Life Span. 2nd ed. Philadelphia, PA: W.B. Saunders; 2002.

  • 5.

    Daniels GL, Newell KM. Attentional focus influences the walk-run transition in human locomotion. Biol Psychol. 2003;63(2):16378. PubMed ID: 12738406 doi:10.1016/s0301-0511(03)00024-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Dunbar CC, Robertson RJ, Baun R, et al. The validity of regulating exercise intensity by ratings of perceived exertion. Med Sci Sports Exerc. 1992;24(1):949. PubMed ID: 1549002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Eston RG, Davies BL, Williams JG. Use of perceived effort ratings to control exercise intensity in young healthy adults. Eur J Appl Physiol Occup Physiol. 1987;56(2):2224. PubMed ID: 3569229 doi:10.1007/BF00640648

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Farris DJ, Sawicki GS. Human medial gastrocnemius force-velocity behavior shifts with locomotion speed and gait. Proc Natl Acad Sci U S A. 2012;109(3):97782. PubMed ID: 22219360 doi:10.1073/pnas.1107972109

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Froehle AW, Nahhas RW, Sherwood RJ, Duren DL. Age-related changes in spatiotemporal characteristics of gait accompany ongoing lower limb linear growth in late childhood and early adolescence. Gait Posture. 2013;38(1):149. PubMed ID: 23159678 doi:10.1016/j.gaitpost.2012.10.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Ganley KJ, Stock A, Herman RM, Santello M, Willis WT. Fuel oxidation at the walk-to-run-transition in humans. Metabolism. 2011;60(5):60916. PubMed ID: 20708204 doi:10.1016/j.metabol.2010.06.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Groslambert A, Mahon AD. Perceived exertion: influence of age and cognitive development. Sports Med. 2006;36(11):91128. PubMed ID: 17052130 doi:10.2165/00007256-200636110-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hagio S, Fukuda M, Kouzaki M. Identification of muscle synergies associated with gait transition in humans. Front Hum Neurosci. 2015;9:48. PubMed ID: 25713525 doi:10.3389/fnhum.2015.00048

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hampson DB, St Clair Gibson A, Lambert MI, Noakes TD. The influence of sensory cues on the perception of exertion during exercise and central regulation of exercise performance. Sports Med. 2001;31(13):93552. PubMed ID: 11708402 doi:10.2165/00007256-200131130-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hreljac A, Arata A, Ferber R, Mercer JA, Row BS. An electromyographical analysis of the role of dorsiflexors on the gait transition during human locomotion. J Appl Biomech. 2001;17(4):28796. doi:10.1123/jab.17.4.287

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Hreljac A. Determinants of the gait transition speed during human locomotion: kinematic factors. J Biomech. 1995;28(6):66977. PubMed ID: 7601866 doi:10.1016/0021-9290(94)00120-s

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Kung SM, Fink PW, Legg SJ, Ali A, Shultz SP. Age-dependent variability in spatiotemporal gait parameters and the walk-to-run transition. Hum Mov Sci. 2019;66:6006. PubMed ID: 31277034 doi:10.1016/j.humov.2019.06.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Long III LL, Srinivasan M. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk–run–rest mixtures. J R Soc Interface. 2013;10(81):20120980. PubMed ID: 23365192 doi:10.1098/rsif.2012.0980

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Mahon AD, Gay JA, Stolen KQ. Differentiated ratings of perceived exertion at ventilatory threshold in children and adults. Eur J Appl Physiol Occup Physiol. 1998;78(2):11520. PubMed ID: 9694309 doi:10.1007/s004210050395

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Mahon AD, Stolen KQ, Gay JA. Differentiated perceived exertion during submaximal exercise in children and adults. Pediatr Exerc Sci. 2001;13(2):14553. doi:10.1123/pes.13.2.145

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Malcolm P, Fiers P, Segers V, Van Caekenberghe I, Lenoir M, De Clercq D. Experimental study on the role of the ankle push off in the walk-to-run transition by means of a powered ankle-foot-exoskeleton. Gait Posture. 2009;30(3):3227. PubMed ID: 19576776 doi:10.1016/j.gaitpost.2009.06.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Malcolm P, Segers V, Van Caekenberghe I, De Clercq D. Experimental study of the influence of the m. tibialis anterior on the walk-to-run transition by means of a powered ankle-foot exoskeleton. Gait Posture. 2009;29(1):610. PubMed ID: 18620862 doi:10.1016/j.gaitpost.2008.05.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Mercier J, Le Gallais D, Durand M, Goudal C, Micallef JP, Prefaut C. Energy expenditure and cardiorespiratory responses at the transition between walking and running. Eur J Appl Physiol Occup Physiol. 1994;69(6):5259. PubMed ID: 7713073 doi:10.1007/BF00239870

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Monteiro WD, Farinatti PT, de Oliveira CG, Araújo CGS. Variability of cardio-respiratory, electromyographic, and perceived exertion responses at the walk-run transition in a sample of young men controlled for anthropometric and fitness characteristics. Eur J Appl Physiol. 2011;111(6):101726. PubMed ID: 21085983 doi:10.1007/s00421-010-1720-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Neptune RR, Sasaki K. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed. J Exp Biol. 2005;208(5):799808. PubMed ID: 15755878 doi:10.1242/jeb.01435

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Pires NJ, Lay BS, Rubenson J. Joint-level mechanics of the walk-to-run transition in humans. J Exp Biol. 2014;217(19):351927. PubMed ID: 25104752 doi:10.1242/jeb.107599

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Prilutsky BI, Gregor RJ. Swing- and support-related muscle actions differentially trigger human walk-run and run-walk transitions. J Exp Biol. 2001;204(13):227787. PubMed ID: 11507111

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Robertson RJ, Goss FL, Boer N, et al. OMNI scale perceived exertion at ventilatory breakpoint in children: response normalized. Med Sci Sports Exerc. 2001;33(11):194652. PubMed ID: 11689748 doi:10.1097/00005768-200111000-00022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Robertson RJ, Noble BJ. Perception of physical exertion: methods, mediators, and applications. Exerc Sport Sci Rev. 1997;25(1):40752. PubMed ID: 9213100

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Rotstein A, Inbar O, Berginsky T, Meckel Y. Preferred transition speed between walking and running: effects of training status. Med Sci Sports Exerc. 2005;37(11):186470. PubMed ID: 16286854 doi:10.1249/01.mss.0000177217.12977.2f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Shik ML, Severin FV, Orlovskii GN. [Control of walking and running by means of electric stimulation of the midbrain]. Biofizika. 1966;11(4):65966. PubMed ID: 6000625

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Tseh W, Bennett J, Caputo JL, Morgan DW. Comparison between preferred and energetically optimal transition speeds in adolescents. Eur J Appl Physiol. 2002;88(1–2):11721. PubMed ID: 12436278 doi:10.1007/s00421-002-0698-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Tucker R. The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br J Sports Med. 2009;43(6):392400. PubMed ID: 19224911 doi:10.1136/bjsm.2008.050799

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Ulmer HV. Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Experientia. 1996;52(5):41620. PubMed ID: 8641377 doi:10.1007/BF01919309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Utter AC, Robertson RJ, Green JM, Suminski RR, McAnulty SR, Nieman DC. Validation of the adult OMNI scale of perceived exertion for walking/running exercise. Med Sci Sports Exerc. 2004;36(10):177680. PubMed ID: 15595300 doi:10.1249/01.mss.0000142310.97274.94

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Utter AC, Robertson RJ, Nieman DC, Kang J. Children’s OMNI scale of perceived exertion: walking/running evaluation. Med Sci Sports Exerc. 2002;34(1):13944. PubMed ID: 11782659 doi:10.1097/00005768-200201000-00021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Ziv G, Rotstein A. Physiological characteristics of the preferred transition speed in racewalkers. Med Sci Sports Exerc. 2009;41(4):797804. PubMed ID: 19276854 doi:10.1249/MSS.0b013e31818ff715

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 348 348 88
Full Text Views 12 12 5
PDF Downloads 9 9 5