Carbohydrate Drink Use During 30 Minutes of Variable-Intensity Exercise Has No Effect on Exercise Performance in Premenarchal Girls

in Pediatric Exercise Science

Click name to view affiliation

C. Eric HeidornBall State University

Search for other papers by C. Eric Heidorn in
Current site
Google Scholar
PubMed
Close
*
,
Brandon J. DykstraBall State University

Search for other papers by Brandon J. Dykstra in
Current site
Google Scholar
PubMed
Close
*
,
Cori A. ConnerBall State University

Search for other papers by Cori A. Conner in
Current site
Google Scholar
PubMed
Close
*
, and
Anthony D. MahonBall State University

Search for other papers by Anthony D. Mahon in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: This study examined the physiological, perceptual, and performance effects of a 6% carbohydrate (CHO) drink during variable-intensity exercise (VIE) and a postexercise test in premenarchal girls. Methods: A total of 10 girls (10.4 [0.7] y) participated in the study. VO2peak was assessed, and the girls were familiarized with VIE and performance during the first visit. The trial order (CHO and placebo) was randomly assigned for subsequent visits. The drinks were given before VIE bouts and 1-minute performance (9 mL/kg total). Two 15-minute bouts of VIE were completed (10 repeated sequences of 20%, 55%, and 95% power at VO2peak and maximal sprints) before a 1-minute performance sprint. Results: The mean power, peak power, heart rate (HR), %HRpeak, and rating of perceived exertion during VIE did not differ between trials. However, the peak power decreased, and the rating of perceived exertion increased from the first to the second bout. During the 1-minute performance, there were no differences between the trial (CHO vs placebo) for HR (190 [9] vs 189 [9] bpm), %HRpeak (97.0% [3.2%] vs 96.6% [3.0%]), rating of perceived exertion (7.8 [2.3] vs 8.1 [1.9]), peak power (238 [70] vs 235 [60] W), fatigue index (54.7% [10.0%] vs 55.9% [12.8%]), or total work (9.4 [2.6] vs 9.4 [2.1] kJ). Conclusion: CHO supplementation did not alter physiological, perceptual, or performance responses during 30 minutes of VIE or postexercise sprint performance in premenarchal girls.

The authors are with the Human Performance Laboratory, Ball State University, Muncie, IN, USA.

Heidorn (cheidorn@kent.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Aucouturier J, Baker JS, Duché P. Fat and carbohydrate metabolism during submaximal exercise in children. Sports Med. 2008;38(3):21338. PubMed ID: 18278983 doi:10.2165/00007256-200838030-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bar-Or O. Pediatric Sports Medicine for the Practitioner: From Physiologic Principles to Clinical Applications. Springer, New York; 1983.

  • 3.

    Coyle EF, Coggan AR. Effectiveness of carbohydrate feeding in delaying fatigue during prolonged exercise. Sports Med. 1984;1(6):44658. PubMed ID: 6390613 doi:10.2165/00007256-198401060-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Coyle EF, Coggan AR, Hemmert MK, Ivy JL. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol. 1986;61(1):16572. PubMed ID: 3525502 doi:10.1152/jappl.1986.61.1.165

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Davis JM, Welsh RS, Alderson NA. Effects of carbohydrate and chromium ingestion during intermittent high-intensity exercise to fatigue. Int J Sport Nutr Exerc Metab. 2000;10(4):47685. PubMed ID: 11099374 10.1123/ijsnem.10.4.476

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Dougherty KA, Baker LB, Chow M, Kenney WL. Two percent dehydration impairs and six percent carbohydrate drink improves boys basketball skills. Med Sci Sports Exerc. 2006;38(9):16508. PubMed ID: 16960527 doi:10.1249/01.mss.0000227640.60736.8e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Eriksson BO, Gollnick PD, Saltin B. Muscle metabolism and enzyme activities after training in boys 11–13 years old. Acta Physiol Scand. 1973;87(4):48597. PubMed ID: 4269332 doi:10.1111/j.1748-1716.1973.tb05415.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Eriksson O, Saltin B. Muscle metabolism during exercise in boys aged 11 to 16 years compared to adults. Acta Paediatr Belg. 1974;28(suppl):25765.

  • 9.

    Hendelman DL, Ornstein K, Volpe S, Freedson PS. Pre-exercise carbohydrate feeding in adolescent boys: effect on exercise responses and performance 724. Med Sci Sports Exerc. 1997 ;29(suppl):126. doi:10.1097/00005768-199705001-00723

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Jeukendrup A, Brouns F, Wagenmakers AJM, Saris WHM. Carbohydrate-electrolyte feedings improve 1 h time trial cycling performance. Int J Sports Med. 2007;18(2):1259. doi:10.1055/s-2007-972607

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Kuczmarski RJ, Flegal KM. Criteria for definition of overweight in transition: background and recommendations for the United States. Am J Clin Nutr. 2000;72(5):107481. PubMed ID: 11063431 doi:10.1093/ajcn/72.5.1074

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Lee JD, Sterrett LE, Guth LM, Konopka AR, Mahon AD. The effect of pre-exercise carbohydrate supplementation on anaerobic exercise performance in adolescent males. Pediatr Exerc Sci. 2011;23(3):34454. PubMed ID: 21881155 doi:10.1123/pes.23.3.344

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Mahon AD, Marjerrison AD, Lee JD, Woodruff ME, Hanna LE. Evaluating the prediction of maximal heart rate in children and adolescents. Res Q Exerc Sport. 2010;81(4):46671. PubMed ID: 21268470 doi:10.1080/02701367.2010.10599707

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Marjerrison AD, Lee JD, Mahon AD. Preexercise carbohydrate consumption and repeated anaerobic performance in pre-and early-pubertal boys. Int J Sport Nutr Exerc Metab. 2007;17(2):14051. PubMed ID: 17507739 doi:10.1123/ijsnem.17.2.140

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Martinez L, Haymes E. Substrate utilization during treadmill running in prepubertal girls and women. Med Sci Sports Exerc. 1992;24(9):97583. PubMed ID: 1406198 doi:10.1249/00005768-199209000-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):68994. PubMed ID: 11932580

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Nicholas CW, Nuttall FE, Williams C. The Loughborough Intermittent Shuttle Test: A field test that simulates the activity pattern of soccer. J Sports Sci. 2000;18(2):97104. PubMed ID: 10718565 doi:10.1080/026404100365162

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Nicholas CW, Williams C, Lakomy HKA, Phillips G, Nowitz A. Influence of ingesting a carbohydrate-electrolyte solution on endurance capacity during intermittent, high-intensity shuttle running. J Sports Sci. 1995;13(4):28390. PubMed ID: 7474041 doi:10.1080/02640419508732241

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Phillips SM, Turner AP, Gray S, Sanderson MF, Sproule J. Ingesting a 6% carbohydrate-electrolyte solution improves endurance capacity, but not sprint performance, during intermittent, high-intensity shuttle running in adolescent team games players aged 12–14 years. Eur J Appl Physiol. 2010;109(5):81121. PubMed ID: 20229023 doi:10.1007/s00421-010-1404-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Phillips SM, Turner AP, Sanderson MF, Sproule J. Carbohydrate gel ingestion significantly improves the intermittent endurance capacity, but not sprint performance, of adolescent team games players during a simulated team games protocol. Eur J Appl Physiol. 2012;112(3):113341. PubMed ID: 21750974 doi:10.1007/s00421-011-2067-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Riddell MC, Bar-Or O, Wilk B, Parolin ML, Heigenhauser GJF. Substrate utilization during exercise with glucose and glucose plus fructose ingestion in boys ages 10–14 yr. J Appl Physiol. 2001;90(3):90311. PubMed ID: 11181599 doi:10.1152/jappl.2001.90.3.903

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Robertson R, Goss F, Boer N, Peoples J, Foreman A, Dabayebeh I, et al. Children’s OMNI scale of perceived exertion: mixed gender and race validation. Med Sci Sports Exerc. 2000;32(2):4528. PubMed ID: 10694131 doi:10.1097/00005768-200002000-00029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):1536. PubMed ID: 11153730 doi:10.1016/S0735-1097(00)01054-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Tanner J. Growth at Adolescence: With a General Consideration of the Effects of Hereditary and Environmental Factors upon Growth and Maturation from Birth to Maturity. Blackwell Scientific: Oxford, England. 1962;3256.

    • Search Google Scholar
    • Export Citation
  • 25.

    Tarnopolsky M. Sex differences in exercise metabolism and the role of 17-beta estradiol. Med Sci Sports Exerc. 2008;40(4):64854. PubMed ID: 18317381 doi:10.1249/MSS.0b013e31816212ff

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    The Aspen Institute [Internet]. State of Play 2019: Trends and Developments. 2019 [cited 2020 Nov 13]. Available from: https://www.aspeninstitute.org/publications/state-of-play-2019-trends-and-developments/

    • Search Google Scholar
    • Export Citation
  • 27.

    Timmons BW, Bar-Or O, Riddell MC. Energy substrate utilization during prolonged exercise with and without carbohydrate intake in preadolescent and adolescent girls. J Appl Physiol. 2007;103(3):9951000. PubMed ID: 17615283 doi:10.1152/japplphysiol.00018.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Timmons BW, Bar-Or O, Riddell MC. Influence of age and pubertal status on substrate utilization during exercise with and without carbohydrate intake in healthy boys. Appl Physiol Nutr Metab. 2007;32(3):41625. PubMed ID: 17510676 doi:10.1139/H07-004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Timmons BW, Bar-Or O, Riddell MC. Oxidation rate of exogenous carbohydrate during exercise is higher in boys than in men. J Appl Physiol. 2003;94(1):27884. PubMed ID: 12391100 doi:10.1152/japplphysiol.00140.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Tremblay J, Peronnet F, Massicotte D, Lavoie C. Carbohydrate supplementation and sex differences in fuel selection during exercise. Med Sci Sports Exerc. 2010;42(7):131423. PubMed ID: 20019632 doi:10.1249/MSS.0b013e3181cbba0b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Venables MC, Achten J, Jeukendrup AE. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J Appl Physiol. 2005;98(1):1607. PubMed ID: 15333616 doi:10.1152/japplphysiol.00662.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1257 732 96
Full Text Views 18 1 1
PDF Downloads 24 3 2