Reciprocal Longitudinal Relationship Between Fitness, Fatness, and Metabolic Syndrome in Brazilian Children and Adolescents: A 3-Year Longitudinal Study

in Pediatric Exercise Science
View More View Less
  • 1 University of Santa Cruz do Sul—UNISC
  • 2 Federal University of Rio Grande do Sul
  • 3 University of Utah
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $69.00

1 year online subscription

USD  $92.00

Student 2 year online subscription

USD  $131.00

2 year online subscription

USD  $175.00

Purpose: To verify the reciprocal longitudinal relationships between cardiorespiratory fitness (CRF), percentage body fat (%body fat), and metabolic syndrome in Brazilian primary school students. Method: This longitudinal study involved 420 children and adolescents followed for 3 years (2011–2014). The continuous Metabolic Syndrome (cMetSyn) score was calculated by summing adjusted z scores of glucose, systolic blood pressure, total cholesterol/high-density lipoprotein cholesterol ratio, triglycerides, and waist circumference. The CRF was assessed using running/walking tests, and %body fat was assessed through sex-specific 2-site skinfold thickness. Cross-lagged panel models were used to analyze longitudinal reciprocal relationships between CRF and %body fat with cMetSyn. Results: Results indicated that 2011 %body fat significantly predicted both 2014 CRF scores and 2014 cMetSyn scores (P < .001); however, 2011 CRF only predicted 2014 %body fat (P < .001) but not 2014 cMetSyn (P = .103). Furthermore, 2011 cMetSyn predicted 2014 %body fat (P = .002). The model explained 36%, 48%, and 37% of the variance in 2014 CRF, %body fat, and cMetSyn, respectively. Conclusion: The results suggest a reciprocal inverse relationship between %body fat and metabolic syndrome risk and that %body fat may play a more important role in the risk of developing metabolic syndrome compared with CRF.

Reuter, Brand, Silveira, Borba Schneiders, and Renner are with the Graduate Program in Health Promotion, University of Santa Cruz do Sul—UNISC, Santa Cruz do Sul, Brazil. Borfe is with the Graduate Program in Human Health Sciences, School of Physical Education, Physiotherapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, Brazil. Burns is with The University of Utah, Salt Lake City, UT, USA.

Brand (carolbrand@hotmail.com.br) is corresponding author.
  • 1.

    ABEP. Brazilian economic classification criteria. 2012. http://www.abep.org/criterio-brasil. Accessed June, 2020.

  • 2.

    Armstrong N. Top 10 research questions related to youth aerobic fitness. Res Q Exerc Sport. 2017;88(2):13048. PubMed ID: 28402178 doi:10.1080/02701367.2017.1303298

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Armstrong N, Welsman J. Traditional and new perspectives on youth cardiorespiratory fitness. Med Sci Sports Exerc. 2020;52(12):256373. PubMed ID: 32735109 doi:10.1249/MSS.0000000000002418

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bailey DP, Savory LA, Denton SJ, Kerr CJ. The association between cardiorespiratory fitness and cardiometabolic risk in children is mediated by abdominal adiposity: the HAPPY study. J Phys Act Heal. 2015;12(8):114852. PubMed ID: 25324427 doi:10.1123/jpah.2014-0311

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Berchicci M, Pontifex MB, Drollette ES, Pesce C, Hillman CH, Di Russo F. From cognitive motor preparation to visual processing: the benefits of childhood fitness to brain health. Neuroscience. 2015;298:2119. PubMed ID: 25907444 doi:10.1016/j.neuroscience.2015.04.028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Blair SN, Kohl HW, Paffenbarger RS, Clark DG, Cooper KH, Gibbons LW. Physical fitness and all-cause mortality. A prospective study of healthy men and women. J Am Med Assoc. 1989;262(17):2395401. PubMed ID: 2795824 doi:10.1001/jama.262.17.2395

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Brand C, Dias AF, Fochesatto CF, et al. The role of body fat in the relationship of cardiorespiratory fitness with cardiovascular risk factors in Brazilian children. Motriz. 2018;24(4):16.

    • Search Google Scholar
    • Export Citation
  • 8.

    Brouwer SI, Stolk RP, Liem ET, Lemmink KAPM, Corpeleijn E. The role of fitness in the association between fatness and cardiometabolic risk from childhood to adolescence. Pediatr Diabetes. 2013;14(1):5765. PubMed ID: 22830519 doi:10.1111/j.1399-5448.2012.00893.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Demmer DL, Beilin LJ, Hands B, et al. Fatness and fitness with cardiometabolic risk factors in adolescents. J Clin Endocrinol Metab. 2017;102(12):446776. PubMed ID: 29088412 doi:10.1210/jc.2017-00851

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Fairchild TJ, Klakk H, Heidemann M, Andersen LB, Wedderkopp N. Exploring the relationship between adiposity and fitness in young children. Med Sci Sports Exerc. 2016;48(9):170814. PubMed ID: 27116646 doi:10.1249/MSS.0000000000000958

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Flores LS, Gaya AR, Petersen RDS, Gaya A. Trends of underweight, overweight, and obesity in Brazilian children and adolescents. J Pediatr. 2013;89(5):45661. PubMed ID: 23850108 doi:10.1016/j.jped.2013.02.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Gonçalves EC de A, Alves Junior CAS, Nunes HEG, Souza MC de, Silva DAS. Prevalence of Brazilian children and youth who meet health criteria for cardiorespiratory fitness: systematic review. Braz J Kinanthrop Hum Perform. 2018;20(4):44671. doi:10.5007/1980-0037.2018v20n4p446

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Jackowski SA, Eisenmann JC, Sherar LB, Bailey DA, Baxter-Jones ADG. Adolescent trajectories of aerobic fitness and adiposity as markers of cardiometabolic risk in adulthood. J Obes. 2017;2017:6471938. PubMed ID: 29279776 doi:10.1155/2017/6471938

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Jago R, Drews KL, McMurray RG, et al. BMI change, fitness change and cardiometabolic risk factors among 8th grade youth. Pediatr Exerc Sci. 2013;25(1):5268. PubMed ID: 23406707 doi:10.1123/pes.25.1.52

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Jago R, Drews KL, McMurray RG, et al. Fatness, fitness, and cardiometabolic risk factors among sixth-grade youth. Med Sci Sports Exerc. 2010;42(8):150210. PubMed ID: 20139783 doi:10.1249/MSS.0b013e3181d322c4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Klakk H, Grontved A, Moller NC, Heidemann M, Andersen LB, Wedderkopp N. Prospective association of adiposity and cardiorespiratory fitness with cardiovascular risk factors in healthy children. Scand J Med Sci Sports. 2014;24(4):e27582. PubMed ID: 24397591 doi:10.1111/sms.12163

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Knapen J, Vancampfort D, Moriën Y, Marchal Y. Exercise therapy improves both mental and physical health in patients with major depression. Disabil Rehabil. 2015;37(16):149095. PubMed ID: 25342564 doi:10.3109/09638288.2014.972579

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Laitinen T, Laitinen TT, Pahkala K, et al. Ideal cardiovascular health in childhood and cardiometabolic outcomes in adulthood: the cardiovascular risk in young Finns study. Circulation. 2012;125(16):19718. PubMed ID: 22452832 doi:10.1161/CIRCULATIONAHA.111.073585

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Lang JJ, Larouche R, Tremblay MS. The association between physical fitness and health in a nationally representative sample of Canadian children and youth aged 6 to 17 years. Heal Promot Chronic Dis Prev Can. 2019;39(3):10411. PubMed ID: 30869473 doi:10.24095/hpcdp.39.3.02

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Magge SN, Goodman E, Armstrong SC. The metabolic syndrome in children and adolescents: shifting the focus to cardiometabolic risk factor clustering. Pediatrics. 2017;140(2):e20171603. PubMed ID: 28739653 doi:10.1542/peds.2017-1603

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Mandsager K, Harb S, Cremer P, Phelan D, Nissen SE, Jaber W. Association of cardiorespiratory fitness with long-term mortality among adults undergoing exercise treadmill testing. JAMA Netw Open. 2018;1(6):e183605. PubMed ID: 30646252 doi:10.1001/jamanetworkopen.2018.3605

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Matos N, Winsley RJ. Trainability of young athletes and overtraining. J Sports Sci Med. 2007;6:35367. PubMed ID: 24149422

  • 23.

    Mintjens S, Menting MD, Daams JG, et al. Cardiorespiratory fitness in childhood and adolescence affects future cardiovascular risk factors: a systematic review of longitudinal studies. Sports Med. 2018;48(11):2577605. PubMed ID: 30144022 doi:10.1007/s40279-018-0974-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Motlagh ME, Qorbani M, Rafiemanzelat A, et al. Prevalence of cardiometabolic risk factors in a nationally representative sample of Iranian children and adolescents : the CASPIAN-V Study. Tabriz Univ Med Sci. 2018;10(2):7682. PubMed ID: 30116505 doi:10.15171/jcvtr.2018.12

    • Search Google Scholar
    • Export Citation
  • 25.

    Ortega FB, Lavie CJ, Blair SN. Obesity and cardiovascular disease. Circ Res. 2016;118(11):175270. PubMed ID: 27230640 doi:10.1161/CIRCRESAHA.115.306883

  • 26.

    Perez-Bey A, Ruiz JR, Ortega FB, et al. Bidirectional associations between fitness and fatness in youth: a longitudinal study. Scand J Med Sci Sports. 2020;30(8):148396. PubMed ID: 32297361 doi:10.1111/sms.13684

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Pinckard K, Baskin KK, Stanford KI. Effects of exercise to improve cardiovascular health. Front Cardiovasc Med. 2019;6:69. PubMed ID: 31214598 doi:10.3389/fcvm.2019.00069

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    PROESP-BR. Manual de aplicação de medidas e testes, normas e critérios de avaliação. 2009. https://www.ufrgs.br/proesp/. Accessed March, 2011.

    • Search Google Scholar
    • Export Citation
  • 29.

    PROESP-BR. Manual de testes e avaliação. 2012. https://www.ufrgs.br/proesp/. Accessed November, 2014.

  • 30.

    Redwine KM, Acosta AA, Poffenbarger T, Portman RJ, Samuels J. Development of hypertension in adolescents with pre-hypertension. J Pediatr. 2012;160(1):98103. PubMed ID: 21868037 doi:10.1016/j.jpeds.2011.07.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Reuter CP, Silva PT da, Renner JDP, et al. Dyslipidemia is associated with unfit and overweight-obese children and adolescents. Arq Bras Cardiol. 2016;106(3):18893. PubMed ID: 26885973 doi:10.5935/abc.20160025

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Robsahm TE, Falk RS, Heir T, et al. Measured cardiorespiratory fitness and self-reported physical activity: associations with cancer risk and death in a long-term prospective cohort study. Cancer Med. 2016;5(8):213644. PubMed ID: 27227704 doi:10.1002/cam4.773

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Ross R, Blair SN, Arena R, et al. Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation. 2016;134(24):65399. PubMed ID: 27881567 doi:10.1161/CIR.0000000000000461

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Rowland TW. The “trigger hypothesis” for aerobic trainability: a 14-year follow-up. Pediatr Exerc Sci. 1997;9(1):19. doi:10.1123/pes.9.1.1

  • 35.

    Sahoo K, Sahoo B, Choudhury AK, Sofi NY, Kumar R, Bhadoria AS. Childhood obesity: causes and consequences. J Fam Med Prim Care. 2015;4(2):18792. PubMed ID: 25949965 doi:10.4103/2249-4863.154628

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Sandbakk SB, Nauman J, Lavie CJ, Wisløff U, Stensvold D. Combined association of cardiorespiratory fitness and body fatness with cardiometabolic risk factors in older Norwegian adults: the generation 100 study. Mayo Clin Proc Innov Qual Outcomes. 2017;1(1):6777. PubMed ID: 30225403 doi:10.1016/j.mayocpiqo.2017.05.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Santos FK, Prista A, Gomes TNQF, et al. Body mass index, cardiorespiratory fitness and cardiometabolic risk factors in youth from Portugal and Mozambique. Int J Obes. 2015;39(10):146774. PubMed ID: 26058391 doi:10.1038/ijo.2015.110

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    SBC, SBH, SBN. VI Diretrizes Brasileiras de Hipertensão. Arq Bras Cardiol. 2010;95 Suppl 1:151. PubMed ID: 21085756

  • 39.

    Schmidt MD, Magnussen CG, Rees E, Dwyer T, Venn AJ. Childhood fitness reduces the long-term cardiometabolic risks associated with childhood obesity. Int J Obes. 2016;40(7):113440. PubMed ID: 27102049 doi:10.1038/ijo.2016.61

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Slaughter MH, Lohman TG, Boileau RA, et al. Skinfold equations for estimations of body fatness in children and youth. Hum Biol. 1988;60(5):70923. PubMed ID: 3224965

    • Search Google Scholar
    • Export Citation
  • 41.

    Stavnsbo M, Resaland GK, Anderssen SA, et al. Reference values for cardiometabolic risk scores in children and adolescents: suggesting a common standard. Atherosclerosis. 2018;278:299306. PubMed ID: 30477756 doi:10.1016/j.atherosclerosis.2018.10.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Stoner L, Pontzer H, Barone Gibbs B, et al. Fitness and fatness are both associated with cardiometabolic risk in preadolescents. J Pediatr. 2020;217:3945.e1. PubMed ID: 31759583 doi:10.1016/j.jpeds.2019.09.076

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Tanner JM. Growth at Adolescence. 2nd ed. Oxford, UK: Blackwell Scientific; 1962.

  • 44.

    Taylor RW, Jones IE, Williams SM, Goulding A. Evaluation of waist circumference, waist-to-hip ratio, and the conicity index as screening tools for high trunk fat mass, as measured by dual-energy X-ray absorptiometry, in children aged 3–19 y. Am J Clin Nutr. 2000;72(2):4905. PubMed ID: 10919946 doi:10.1093/ajcn/72.2.490

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Tomkinson G. Aerobic fitness thresholds for cardio metabolic health in children and adolescents. Br J Sports Med. 2011;45(9):6867. PubMed ID: 20634387 doi:10.1136/bjsm.2009.069815

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Weihrauch-Blüher S, Schwarz P, Klusmann JH. Childhood obesity: increased risk for cardiometabolic disease and cancer in adulthood. Metabolism. 2019;92:14752. PubMed ID: 30529454 doi:10.1016/j.metabol.2018.12.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Zyphur MJ, Allison PD, Tay L, et al. From data to causes I: building a general cross-lagged panel model (GCLM). Organ Res Methods. 2019;23(4):65187. doi:10.1177/1094428119847278

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 186 186 186
Full Text Views 8 8 8
PDF Downloads 8 8 8