The Effects of Exercise Serum From Prepubertal Girls and Women on In Vitro Myoblast and Osteoblast Proliferation and Differentiation

in Pediatric Exercise Science

Click name to view affiliation

Yasmeen MezilMcMaster University

Search for other papers by Yasmeen Mezil in
Current site
Google Scholar
PubMed
Close
*
,
Joyce ObeidMcMaster University

Search for other papers by Joyce Obeid in
Current site
Google Scholar
PubMed
Close
*
,
Inna UshcatzMcMaster University

Search for other papers by Inna Ushcatz in
Current site
Google Scholar
PubMed
Close
*
,
Sandeep RahaMcMaster University

Search for other papers by Sandeep Raha in
Current site
Google Scholar
PubMed
Close
*
, and
Brian W. TimmonsMcMaster University

Search for other papers by Brian W. Timmons in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: In girls and women, the authors studied the effects of an acute bout of low-impact, moderate-intensity exercise serum on myoblast and osteoblast proliferation in vitro. Methods: A total of 12 pre/early pubertal girls (8–10 y old) and 12 women (20–30 y old) cycled at 60% VO2max for 1 hour followed by 1-hour recovery. Blood samples were collected at rest, mid-exercise, end of exercise, mid-recovery, and end of recovery. C2C12 myoblasts and MC3T3E1 osteoblasts were incubated with serum from each time point for 1 hour, then monitored for 24 hours (myoblasts) or 36 hours (osteoblasts) to examine proliferation. Cells were also monitored for 6 days (myoblasts) to examine myotube formation and 21 days (osteoblasts) to examine mineralization. Results: Exercise did not affect myoblast or osteoblast proliferation. Girls exhibited lower cell proliferation relative to women at end of exercise (osteoblasts, P = .041; myoblasts, P = .029) and mid-recovery (osteoblasts, P = .010). Mineralization was lower at end of recovery relative to rest (P = .014) in both girls and women. Myotube formation was not affected by exercise or group. Conclusion: The systemic environment following one acute bout of low-impact moderate-intensity exercise in girls and women does not elicit osteoblast or myoblast activity in vitro. Differences in myoblast and osteoblast proliferation between girls and women may be influenced by maturation.

Mezil, Obeid, Ushcatz, and Timmons are with the Child Health & Exercise Medicine Program, Department of Pediatrics, McMaster University, Hamilton, ON, Canada. Obeid, Raha, and Timmons are with the Department of Pediatrics, McMaster University, Hamilton, ON, Canada.

Timmons (timmonbw@mcmaster.ca) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Adamski D, Mayol J-F, Platet N, Berger F, Hérodin F, Wion D. Effects of Hoechst 33342 on C2C12 and PC12 cell differentiation. FEBS Lett. 2007;581(16):307680. PubMed ID: 17560574 doi:10.1016/j.febslet.2007.05.073

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Banfi G, Lombardi G, Colombini A, Lippi G. Bone metabolism markers in sports medicine. Sports Med. 2010;40(8):697714. PubMed ID: 20632739 doi:10.2165/11533090-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Baquet G, Van Praagh E, Berthoin S. Endurance training and aerobic fitness in young people. Sports Med. 2003;33(15):112743. PubMed ID: 14719981 doi:10.2165/00007256-200333150-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bazgir B, Fathi R, Rezazadeh Valojerdi M, Mozdziak P, Asgari A. Satellite cells contribution to exercise mediated muscle hypertrophy and repair. Cell J. 2017;18(4):47384. PubMed ID: 28042532 doi:10.22074/cellj.2016.4714

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Berg U, Bang P. Exercise and circulating insulin-like growth factor I. Horm Res. 2004;62 Suppl 1:508. PubMed ID: 15761233 doi:10.1159/000080759

  • 6.

    Burrows M. Exercise and bone mineral accrual in children and adolescents. J Sports Sci Med. 2007;6(3):30512 PubMed ID: 24149416

  • 7.

    Casazza K, Hanks LJ, Alvarez JA. Role of various cytokines and growth factors in pubertal development. Med Sport Sci. 2010;55:1431. PubMed ID: 20956857 doi:10.1159/000321969

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Courteix D, Lespessailles E, Peres SL, Obert P, Germain P, Benhamou CL. Effect of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports. Osteoporos Int. 1998;8(2):1528. PubMed ID: 9666939 doi:10.1007/BF02672512

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Dogra C, Changotra H, Mohan S, Kumar A. Tumor necrosis factor-like weak inducer of apoptosis inhibits skeletal myogenesis through sustained activation of nuclear factor-kappaB and degradation of MyoD protein. J Biol Chem. 2006;281(15):1032736. PubMed ID: 16461349 doi:10.1074/jbc.M511131200

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Erickson CR, Vukovich MD. Osteogenic index and changes in bone markers during a jump training program: a pilot study. Med Sci Sports Exerc. 2010;42(8):148592. PubMed ID: 20139789 doi:10.1249/MSS.0b013e3181d0fa7a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):155765. PubMed ID: 18949660 doi:10.1080/02640410802334196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Falk B, Bronshtein Z, Zigel L, Constantini NW, Eliakim A. Quantitative ultrasound of the tibia and radius in prepubertal and early-pubertal female athletes. Arch Pediatr Adolesc Med. 2003;157(2):13943. PubMed ID: 12580682 doi:10.1001/archpedi.157.2.139

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Frost A, Jonsson KB, Nilsson O, Ljunggren Ö. Inflammatory cytokines regulate proliferation of cultured human osteoblasts. Acta Orthop Scand. 1997;68(2):916. PubMed ID: 9174441 doi:10.3109/17453679709003987

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Gäbler M, Prieske O, Hortobágyi T, Granacher U. The effects of concurrent strength and endurance training on physical fitness and athletic performance in youth: a systematic review and meta-analysis. Front Physiol. 2018;9:1057. PubMed ID: 30131714 doi:10.3389/fphys.2018.01057

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Gómez-Bruton A, Gónzalez-Agüero A, Gómez-Cabello A, Casajús JA, Vicente-Rodríguez G. Is bone tissue really affected by swimming? A systematic review. PLoS One. 2013;8(8):e70119. PubMed ID: 23950908 doi:10.1371/journal.pone.0070119

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hamrick MW. The skeletal muscle secretome: an emerging player in muscle-bone crosstalk. Bonekey Rep. 2012;1(4):60. PubMed ID: 23951457 doi:10.1038/bonekey.2012.60

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hody S, Croisier J-L, Bury T, Rogister B, Leprince P. Eccentric muscle contractions: risks and benefits. Front Physiol. 2019;10:536. PubMed ID: 31130877 doi:10.3389/fphys.2019.00536

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kish K, Mezil Y, Ward WE, Klentrou P, Falk B. Effects of plyometric exercise session on markers of bone turnover in boys and young men. Eur J Appl Physiol. 2015;115(10):211524. PubMed ID: 26016944 doi:10.1007/s00421-015-3191-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Klentrou P, Angrish K, Awadia N, Kurgan N, Kouvelioti R, Falk B. Wnt signaling–related osteokines at rest and following plyometric exercise in prepubertal and early pubertal boys and girls. Pediatr Exerc Sci. 2018;30(4):45767. PubMed ID: 29683771 doi:10.1123/pes.2017-0259

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Koizumi K, Saitoh Y, Minami T, et al. Role of CX3CL1/fractalkine in osteoclast differentiation and bone resorption. J Immunol. 2009;183(12):782531. PubMed ID: 19923448 doi:10.4049/jimmunol.0803627

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kouvelioti R, Kurgan N, Falk B, Ward WE, Josse AR, Klentrou P. Response of sclerostin and bone turnover markers to high intensity interval exercise in young women: does impact matter? BioMed Res Int. 2018;2018:4864952. PubMed ID: 30515401 doi:10.1155/2018/4864952

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lang TF. The bone–muscle relationship in men and women. J Osteoporos. 2011;2011:702735. PubMed ID: 22007336 doi:10.4061/2011/702735

  • 23.

    Langan TJ, Chou RC. Synchronization of mammalian cell cultures by serum deprivation. Methods Mol Biol. 2011;761:7583. PubMed ID: 21755442 doi:10.1007/978-1-61779-182-6_5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Langberg H, Skovgaard D, Asp S, Kjaer M. Time pattern of exercise-induced changes in type I collagen turnover after prolonged endurance exercise in humans. Calcif Tissue Int. 2000;67(1):414. PubMed ID: 10908411 doi:10.1007/s00223001094

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    LaStayo PC, Woolf JM, Lewek MD, Snyder-Mackler L, Reich T, Lindstedt SL. Eccentric muscle contractions: their contribution to injury, prevention, rehabilitation, and sport. J Orthop Sports Phys Ther. 2003;33(10):55771. PubMed ID: 14620785 doi:10.2519/jospt.2003.33.10.557

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Malysheva K, de Rooij K, Löwik CWGM, et al. Interleukin 6/Wnt interactions in rheumatoid arthritis: interleukin 6 inhibits Wnt signaling in synovial fibroblasts and osteoblasts. Croat Med J. 2016;57(2):8998. PubMed ID: 27106351 doi:10.3325/cmj.2016.57.89

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Medeiros RMV, Arrais RF, de Azevedo JCV, et al. Contribution of anthropometric characteristics to pubertal stage prediction in young male individuals. Rev Paul Pediatr. 2014;32(3):22935. PubMed ID: 25479854 doi:10.1590/0103-0582201432313

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Mezil YA, Allison D, Kish K, et al. Response of bone turnover markers and cytokines to high-intensity low-impact exercise. Med Sci Sports Exerc. 2015;47(7):1495502. PubMed ID: 25373482 doi:10.1249/MSS.0000000000000555

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Nguyen T, Baker JM, Obeid J, et al. The effects of resting and exercise serum from children with cystic fibrosis on C2C12 myoblast proliferation in vitro. Physiol Rep. 2014;2(6):e12042. PubMed ID: 24944290 doi:10.14814/phy2.12042

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Patti A, Gennari L, Merlotti D, Dotta F, Nuti R. Endocrine actions of osteocalcin. Int J Endocrinol. 2013;2013:846480. PubMed ID: 23737779 doi:10.1155/2013/846480

  • 31.

    Peitz M, Behringer M, Granacher U. A systematic review on the effects of resistance and plyometric training on physical fitness in youth- what do comparative studies tell us? PLoS One. 2018;13(10):e0205525. PubMed ID: 30304033 doi:10.1371/journal.pone.0205525

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Petersen AMW, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol. 2005;98(4):115462. PubMed ID: 15772055 doi:10.1152/japplphysiol.00164.2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Podbregar M, Lainscak M, Prelovsek O, Mars T. Cytokine response of cultured skeletal muscle cells stimulated with proinflammatory factors depends on differentiation stage. Scientific World J. 2013;2013:617170. PubMed ID: 23509435 doi:10.1155/2013/617170

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Rudberg A, Magnusson P, Larsson L, Joborn H. Serum isoforms of bone alkaline phosphatase increase during physical exercise in women. Calcif Tissue Int. 2000;66(5):3427. PubMed ID: 10773103 doi:10.1007/s002230010071

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Schoenau E. From mechanostat theory to development of the “Functional Muscle-Bone-Unit.” J Musculoskelet Neuronal Interact. 2005;5(3):2328. PubMed ID: 16172514

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Scott JPR, Sale C, Greeves JP, Casey A, Dutton J, Fraser WD. The effect of training status on the metabolic response of bone to an acute bout of exhaustive treadmill running. J Clin Endocrinol Metab. 2010;95(8):391825. PubMed ID: 20519353 doi:10.1210/jc.2009-2516

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Shibata Y, Ohsawa I, Watanabe T, Miura T, Sato Y. Effects of physical training on bone mineral density and bone metabolism. J Physiol Anthropol Appl Hum Sci. 2003;22(4):2038. PubMed ID: 12939536 doi:10.2114/jpa.22.203

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Smith GI, Atherton P, Villareal DT, et al. Differences in muscle protein synthesis and anabolic signaling in the postabsorptive state and in response to food in 65–80 year old men and women. PLoS One. 2008;3(3):e1875. PubMed ID: 18365020 doi:10.1371/journal.pone.0001875

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Snijders T, Verdijk LB, Beelen M, et al. A single bout of exercise activates skeletal muscle satellite cells during subsequent overnight recovery. Exp Physiol. 2012;97(6):76273. PubMed ID: 22327327 doi:10.1113/expphysiol.2011.063313

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Tateishi K, Ando W, Higuchi C, et al. Comparison of human serum with fetal bovine serum for expansion and differentiation of human synovial MSC: potential feasibility for clinical applications. Cell Transplant. 2008;17(5):54957. PubMed ID: 18714674 doi:10.3727/096368908785096024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Thi MM, Urban-Maldonado M, Spray DC, Suadicani SO. Characterization of hTERT-immortalized osteoblast cell lines generated from wild-type and connexin43-null mouse calvaria. Am J Physiol-Cell Physiol. 2010;299(5):C994C1006. PubMed ID: 20686067 doi:10.1152/ajpcell.00544.2009.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Tobias JH. At the crossroads of skeletal responses to estrogen and exercise. Trends Endocrinol Metab. 2003;14(10):4413. PubMed ID: 14643056 doi:10.1016/j.tem.2003.09.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Velders M, Solzbacher M, Schleipen B, Laudenbach U, Fritzemeier KH, Diel P. Estradiol and genistein antagonize the ovariectomy effects on skeletal muscle myosin heavy chain expression via ER-beta mediated pathways. J Steroid Biochem Mol Biol. 2010;120(1):539. PubMed ID: 20347979 doi:10.1016/j.jsbmb.2010.03.059

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Vicente-Rodriguez G. How does exercise affect bone development during growth? Sports Med. 2006;36(7):5619. PubMed ID: 16796394 doi:10.2165/00007256-200636070-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Vicente-Rodriguez G, Ara I, Perez-Gomez J, Dorado C, Calbet J. Muscular development and physical activity as major determinants of femoral bone mass acquisition during growth. Br J Sports Med. 2005;39(9):61116. PubMed ID: 16118297 doi:10.1136/bjsm.2004.014431

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Vitucci D, Imperlini E, Arcone R, et al. Serum from differently exercised subjects induces myogenic differentiation in LHCN-M2 human myoblasts. J Sports Sci. 2018;36(14):16309. PubMed ID: 29160161 doi:10.1080/02640414.2017.1407232

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Yin X, Wang X, Hu X, Chen Y, Zeng K, Zhang H. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways. Exp Cell Res. 2015;335(1):10714. PubMed ID: 25957463 doi:10.1016/j.yexcr.2015.04.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Yu M, Wang H, Xu Y, et al. 2015. Insulin-like growth factor-1 (IGF-1) promotes myoblast proliferation and skeletal muscle growth of embryonic chickens via the PI3K/Akt signalling pathway. Cell Biol Int. 39(8):91022. PubMed ID: 25808997 doi:10.1002/cbin.10466

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1340 795 105
Full Text Views 31 6 0
PDF Downloads 27 5 0