Effectiveness of Continuous Aerobic Versus High-Intensity Interval Training on Atherosclerotic and Inflammatory Markers in Boys With Overweight/Obesity

in Pediatric Exercise Science
View More View Less
  • 1 Razi University
Restricted access

Purpose: Atherosclerosis is a complex multifactorial disease whose first steps can be initiated from childhood. Therefore, we examined the effects of 2 training models on salusins levels, inflammatory markers, and lipid profile in boys with overweight/obesity. Method: Forty-five boys with overweight/obesity with the mean age of 11.06 (1.0) years were randomly divided into three groups of 15: a high-intensity interval training (HIIT) group (100%–110% of maximum aerobic speed); an aerobic training group (40%–70% of heart rate reserve); and a control group. The intervention included 3 sessions per week for 12 weeks. Results: Findings showed significant improvements in serum levels of salusins, salusins ratio, interleukin-6 (IL-6), and total cholesterol (TC) in both training groups (P < .001). Also, the serum levels of C-reactive protein (CRP), triglycerides (TG), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), atherogenic index of plasma (AIP), and cholesterol index improved significantly (P < .01). Except for the TG, HIIT caused higher improvements than aerobic training (P < .001 for salusin-α, salusins ratio, IL-6, CRP, TC, HDL, AIP, and cholesterol index; and P < .01 for salusin-β and LDL). Conclusion: The present study shows that HIIT has more positive effects than aerobic exercise on the atherosclerotic and inflammatory factors, as well as lipid profile variables in children with overweight/obesity.

The authors are with the Department of Exercise Physiology, Faculty of Sports Sciences, Razi University, Kermanshah, Iran.

Tadibi (vtadibi@yahoo.com, vahidtadibi@razi.ac.ir) is corresponding author.
  • 1.

    Allison BR, Nicolle MS, Joshua DL. Interleukin-6 in atherosclerosis: atherogenic or atheroprotective? Clin Lipidol. 2017;12(1):1423. doi:10.1080/17584299.2017.1319787

    • Search Google Scholar
    • Export Citation
  • 2.

    Baquet G, Berthoin S, Dupont G, et al. Effects of high intensity intermittent training on peak VO2 in prepubertal children. Int J Sports Med. 2002;23(6):43944. doi:10.1055/s-2002-33742

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Baquet G, Berthoin S, Gerbeaux M, et al. High-intensity aerobic training during a 10 week one-hour physical education cycle: effects on physical fitness of adolescents aged 11 to 16. Int J Sports Med. 2001;22(4):295300. doi:10.1055/s-2001-14343

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bartlett JD, Close GL, MacLaren DP, et al. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence. J Sports Sci. 2011;29(6):54753. doi:10.1080/02640414.2010.545427

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Calabresi L, Gomaraschi M, Franceschini G. Endothelial protection by high-density lipoproteins: from bench to bedside. Arterioscler Thromb Vasc Biol. 2003;23(10):172431. doi:10.1161/01.ATV.0000094961.74697.54

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013;2(2):191200. doi:10.5114/aoms.2013.33181

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320(7244):12403. doi:10.1136/bmj.320.7244.1240

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Costigan SA, Eather N, Plotnikoff RC, et al. High-intensity interval training for improving health-related fitness in adolescents: a systematic review and meta-analysis. Br J Sports Med. 2015;49(19):125361. doi:10.1136/bjsports-2014-094490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Cronin O, Keohane DM, Molloy MG, et al. The effect of exercise interventions on inflammatory biomarkers in healthy, physically inactive subjects: a systematic review. QJM. 2017;110(10):62937. doi:10.1093/qjmed/hcx091

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Csige I, Ujvárosy D, Szabó Z, et al. The impact of obesity on the cardiovascular system. J Diabetes Res. 2018;2018:3407306. doi:10.1155/2018/3407306

  • 11.

    Das UN. Anti-inflammatory nature of exercise. Nutrition. 2004;20(3):3236. doi:10.1016/j.nut.2003.11.017

  • 12.

    Dobiášová M. Atherogenic impact of lecithin-cholesterol acyltransferase and its relation to cholesterol esterification rate in HDL (FER(HDL)) and AIP [log(TG/HDL-C)] biomarkers: the butterfly effect? Physiol Res. 2017;66(2):193203. doi:10.33549/physiolres.933621

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ellulu MS, Patimah I, Khaza’ai H, et al. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017;4(4):85163. doi:10.5114/aoms.2016.58928

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Elmer DJ, Laird RH, Barberio MD, et al. Inflammatory, lipid, and body composition responses to interval training or moderate aerobic training. Eur J App Physiol. 2015;116(3):6019. doi:10.1007/s00421-015-3308-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Fischer CP. Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev. 2006;12:633. PubMed ID: 17201070

  • 16.

    Fisher G, Brown AW, Bohan Brown MMB, et al. High intensity interval versus moderate intensity training for improving cardiometabolic health in overweight or obese males: a randomized controlled trial. PLoS One. 2015;10(10):e0138853. doi:10.1371/journal.pone.0138853

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Fujie S, Hasegawa N, Sanada K, et al. Increased serum salusin-α by aerobic exercise training correlates with improvements in arterial stiffness in middle-aged and older adults. Aging. 2020;12(2):120112. doi:10.18632/aging.102678

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Gielen S, Adams V, Mobius-Winkler S, et al. Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure. J Am Coll Cardiol. 2003;42(5):8618. doi:10.1016/S0735-1097(03)00848-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Karvonen M.J. The effects of training on heart rate: a longitudinal study. Ann Med Exp Biol Fenn. 1957;35(3):30715. PubMed ID: 13470504

  • 20.

    Kontush A, Chapman MJ. Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev. 2006;58(3):34274. doi:10.1124/pr.58.3.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Leszek N, Alicja EG. Salusins and adropin: new peptides potentially involved in lipid 4 metabolism and atherosclerosis. Adv Med Sci. 2016;61(2):2827. doi:10.1016/j.advms.2016.03.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Libby P, Okamoto Y, Rocha VZ, et al. Inflammation in atherosclerosis: transition from theory to practice. Circ J. 2010;74(2):21320. doi:10.1253/circj.CJ-09-0706

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Logan GRM, Harris N, Duncan S, et al. A review of adolescent high-intensity interval training. Sports Med. 2014;44(8):107185. doi:10.1007/s40279-014-0187-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Luan YY, Yao YM. The clinical significance and potential role of C-reactive protein in chronic inflammatory and neurodegenerative diseases. Front Immunol. 2018;9:1302. doi:10.3389/fimmu.2018.01302

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Machado FA, Denadai BS. Validity of maximum heart rate prediction equations for children and adolescents. Arq Bras Cardiol. 2011;97(2):13640. doi:10.1590/S0066-782X2011005000078

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Malina RM. Physical fitness of children and adolescents in the United States: status and secular change. Med Sport Sci. 2007;50:6790. doi:10.1159/000101076

  • 27.

    McGill HC Jr, McMahan CA, Zieske AW, et al. Associations of coronary heart disease risk factors with the intermediate lesion of atherosclerosis in youth. The Pathobiological Determinants of Atherosclerosis in Youth (PDAY) research group. Arterioscler Thromb Vasc Bio. 2000;20(8):19982004. doi:10.1161/01.ATV.20.8.1998

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Michishita R, Shono N, Inoue T, et al. Associations of monocytes, neutrophil count, and C-reactive protein with maximal oxygen uptake in overweight women. J Cardiol. 2008;52(3):24753. doi:10.1016/j.jjcc.2008.07.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Moldoveanu AI, Shephard RJ, Shek PN. The cytokine response to physical activity and training. Sports Med. 2001;31(2):11544. doi:10.2165/00007256-200131020-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Nagashima M, Watanabe T, Shiraishi Y, et al. Chronic infusion of salusin-α and -β exerts opposite effects on atherosclerotic lesion development in apolipoprotein E-deficient mice. Atherosclerosis. 2010;212(1):707. doi:10.1016/j.atherosclerosis.2010.04.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Nazari M, Minasian V, Hovsepian S. Effects of two types of moderate- and high-intensity interval training on serum salusin-α and salusin-β levels and lipid profile in women with overweight/obesity. Diabetes Metab Syndr Obes. 2020;13:138590. doi:10.2147/DMSO.S248476

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Nicklas BJ, Hsu FC, Brinkley TJ, et al. Exercise training and plasma C-reactive protein and interleukin-6 in elderly people. J Am Geriatr Soc. 2008;56(11):204552. doi:10.1111/j.1532-5415.2008.01994.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Nie J, Kong Z, Baker JS, et al. Acute changes in glycemic homeostasis in response to brief high-intensity intermittent exercise in obese adults. J Exerc Sci Fit. 2012;10(2):97100. doi:10.1016/j.jesf.2012.10.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Poggiali E, Migone De Amicis M, Motta I. Anemia of chronic disease: a unique defect of iron recycling for many different chronic diseases. Eur J Intern Med. 2014;25(1):1217. doi:10.1016/j.ejim.2013.07.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Racil G, Coquart JB, Elmontassar W, et al. Greater effects of high- compared with moderate-intensity interval training on cardio-metabolic variables, blood leptin concentration and ratings of perceived exertion in obese adolescent females. Biol Sport. 2016;33(2):14552. doi:10.5604/20831862.1198633

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Racil GO, Ben Ounis O, Hammouda A, et al. Effects of high vs. moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. Eur J Appl Physiol. 2013;113(10):253140. doi:10.1007/s00421-013-2689-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Sato K, Watanabe R, Itoh F, et al. Salusins: potential use as a biomarker for atherosclerosis cardiovascular disease. Int J Hypertens. 2013;2013:965140. doi:10.1155/2013/965140

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol. 2018;9:754. doi:10.3389/fimmu.2018.00754

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Strohacker K, McFarlin BK. Influence of obesity, physical inactivity, and weight cycling on chronic inflammation. Front Biosci. 2010;2:98104. doi:10.2741/e70

    • Search Google Scholar
    • Export Citation
  • 40.

    Suhett LG, Hermsdorff HHM, Rocha NP, et al. Increased C-reactive protein in Brazilian children: association with cardiometabolic risk and metabolic syndrome components (PASE study). Cardiol Res Pract. 2019;2019:3904568. doi:10.1155/2019/3904568

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Takahashi W, Nakada TA, Yazaki M, et al. Interleukin-6 levels act as a diagnostic marker for infection and a prognostic marker in patients with organ dysfunction in intensive care units. Shock. 2016;46(3):25460. doi:10.1097/SHK.0000000000000616

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295. doi:10.1101/cshperspect.a016295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Watanabe T, Nishio K, Kanome T, et al. Impact of salusins-alpha and -beta on human macrophage foam cell formation and coronary atherosclerosis. Circulation. 2008;117(5):63848. doi:10.1161/CIRCULATIONAHA.107.712539

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Watanabe T, Sato K, Itoh F, et al. The roles of salusins in atherosclerosis and related cardiovascular diseases. J Am Soc Hypertens. 2011;5(5):35965. doi:10.1016/j.jash.2011.06.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Weihrauch-Blüher S, Kromeyer-Hauschild K, Graf C, et al. Current guidelines for obesity prevention in childhood and adolescence. Obes Facts. 2018;11(3):26376. doi:10.1159/000486512

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Whitley E, Ball J. Statistics review 4: sample size calculations. Crit Care. 2002;6(4):33541. doi:10.1186/cc1521

  • 47.

    Wu MY, Li CJ, Hou MF, et al. New insights into the role of inflammation in the pathogenesis of atherosclerosis. Int J Mol Sci. 2017;18(10):2034. doi:10.3390/ijms18102034

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2064 1353 92
Full Text Views 56 34 0
PDF Downloads 76 45 0