Correlation Between Heart Rate at Maximal Fat Oxidation and Aerobic Threshold in Healthy Adolescent Boys and Girls

in Pediatric Exercise Science
View More View Less
  • 1 Appalachian State University
  • | 2 Cary Academy
  • | 3 ABSS Early College at ACC
  • | 4 Chapel Hill High School
Restricted access

Purpose: To investigate the association between the heart rate (HR) at maximal fat oxidation (MFO) and the HR at the aerobic threshold (AerT) in adolescent boys and girls, and to identify sex differences in the intensity that elicits MFO (Fatmax) as a percentage of HR peak (HRpeak). Methods: Fifty-eight healthy adolescents participated in this study (29 boys and 29 girls). Participants performed a cardiopulmonary exercise test on a cycle ergometer. MFO was calculated using a stoichiometric equation, and the AerT was identified using gas exchange parameters. Results: A strong correlation between HR at Fatmax and HR at AerT was found in both boys and girls (r = .96 and .94, respectively). Fatmax as a percentage of HRpeak occurred at 61.0% (4.9%) of HRpeak and 66.8% (6.9%) of HRpeak in adolescent boys and girls (P = .001, F = 13.6), respectively. MFO was higher in boys compared with girls (324 [150] and 240 [95] mg/min, respectively), and no sex differences were observed in the relative contribution of fat to energy expenditure at Fatmax. Conclusions: HR at Fatmax and HR at AerT were highly correlated in adolescent boys and girls. Girls obtained Fatmax at a higher percentage of HRpeak than boys.

Meucci and Collier are with the Appalachian State University, Boone, NC, USA. Nandagiri is with Cary Academy, Cary, NC, USA. Kavirayuni is with the ABSS Early College at ACC, Graham, NC, USA. Whang is with the Chapel Hill High School, Chapel Hill, NC, USA.

Meucci (meuccim@appstate.edu) is corresponding author.
  • 1.

    Achten J, Jeukendrup AE. Relation between plasma lactate concentration and fat oxidation rates over a wide range of exercise intensities. Int J Sports Med. 2004;25(1):327. PubMed ID: 14750010 doi:10.1055/s-2003-45231

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Amaro-Gahete FJ, Sanchez-Delgado G, Ruiz JR. Commentary: contextualising maximal fat oxidation during exercise: determinants and normative values. Front Physiol. 2018;9:1460. PubMed ID: 30405428 doi:10.3389/fphys.2018.01460

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Arena R, Myers J, Kaminsky LA. Revisiting age-predicted maximal heart rate: can it be used as a valid measure of effort? Am Heart J. 2016;173:4956. PubMed ID: 26920596 doi:10.1016/j.ahj.2015.12.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Aucouturier J, Baker JS, Duche P. Fat and carbohydrate metabolism during submaximal exercise in children. Sports Med. 2008;38(3):21338. PubMed ID: 18278983 doi:10.2165/00007256-200838030-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bagley L, Slevin M, Bradburn S, et al. Sex differences in the effects of 12 weeks sprint interval training on body fat mass and the rates of fatty acid oxidation and VO2max during exercise. BMJ Open Sport Exerc Med. 2016;2(1):e000056. PubMed ID: 27900150 doi:10.1136/bmjsem-2015-000056

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Cao L, Jiang Y, Li Q, Wang J, Tan S. Exercise training at maximal fat oxidation intensity for overbody mass or obese older women: a randomized study. J Sports Sci Med. 2019;18(3):41318. PubMed ID: 31427862

    • Search Google Scholar
    • Export Citation
  • 7.

    Devries MC. Sex-based differences in endurance exercise muscle metabolism: impact on exercise and nutritional strategies to optimize health and performance in women. Exp Physiol. 2016;101(2):24349. doi:10.1113/EP085369

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Elia M, Livesey G. Energy expenditure and fuel selection in biological systems: the theory and practice of calculations based on indirect calorimetry and tracer methods. World Rev Nutr Diet. 1992;70:68131. PubMed ID: 1292242

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ghanbari-Niaki A, Zare-Kookandeh N. Maximal lipid oxidation (fatmax) in physical exercise and training: a review and update. Ann Appl Sport Sci. 2016;4(3):110. doi:10.18869/acadpub.aassjournal.4.3.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Gmada N, Marzouki H, Haj Sassi R, et al. Relative and absolute reliability of the crossover and maximum fat oxidation points and their relationship to ventilatory threshold. Sci Sports. 2013;28(4):e99105. doi:10.1016/j.scispo.2012.04.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Guidetti L, Meucci M, Bolletta F, Emerenziani GP, Gallotta MC, Baldari C. Validity, reliability and minimum detectable change of COSMED K5 portable gas exchange system in breath-by-breath mode. PLoS One. 2018;13(12):e0209925. PubMed ID: 30596748 doi:10.1371/journal.pone.0209925

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Haufe S, Engeli S, Budziarek P, Utz W, Schulz-Menger J, Hermsdorf M, et al. Determinants of exercise-induced fat oxidation in obese women and men. Horm Metab Res. 2010;42(3):21521. PubMed ID: 19937568 doi:10.1055/s-0029-1242745

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    US Department of Health and Human Services. Physical Activity Guidelines for Americans, 2nd ed. Washington, DC: US Department of Health and Human Services; 2018. https://health.gov/sites/default/files/2019-09/Physical_Activity_Guidelines_2nd_edition.pdf

  • 14.

    Heinzmann-Filho JP, Zanatta LB, Vendrusculo FM, Silva JSD, Gheller MF, Campos NE, et al. Maximum heart rate measured versus estimated by different equations during the cardiopulmonary exercise test in obese adolescents. Rev Paul Pediatr. 2018;36(3):30914. PubMed ID: 30365812 doi:10.1590/1984-0462/;2018;36;3;00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Isacco L, Miles-Chan JL. Gender-specific considerations in physical activity, thermogenesis and fat oxidation: implications for obesity management. Obes Rev. 2018;19 Suppl 1:7383.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Jeukendrup A, Achten J. Fatmax: a new concept to optimize fat oxidation during exercise? Eur J Sport Sci. 2001;1(5):1–5. doi:10.1080/17461390100071507

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Jeukendrup AE, Wallis GA. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med. 2005; 26 Suppl 1:S2837. PubMed ID: 15702454 doi:10.1055/s-2004-830512

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Jiang Y, Tan S, Wang Z, Guo Z, Li Q, Wang J. Aerobic exercise training at maximal fat oxidation intensity improves body composition, glycemic control, and physical capacity in older people with type 2 diabetes. J Exerc Sci Fit. 2020;18(1):713. PubMed ID: 31641362 doi:10.1016/j.jesf.2019.08.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Maunder E, Plews DJ, Kilding AE. Contextualising maximal fat oxidation during exercise: determinants and normative values. Front Physiol. 2018;9:599. PubMed ID: 29875697 doi:10.3389/fphys.2018.00599

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Meyer T, Lucia A, Earnest CP, Kindermann W. A conceptual framework for performance diagnosis and training prescription from submaximal gas exchange parameters—theory and application. Int. J. Sports Med. 2005; 26 Suppl 1:S3848. doi:10.1055/s-2004-830514

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Michallet AS, Tonini J, Regnier J, Guinot M, Favre-Juvin A, Bricout V, et al. Methodological aspects of crossover and maximum fat-oxidation rate point determination. Diabetes Metab. 2008;34(5):51423. PubMed ID: 18823806 doi:10.1016/j.diabet.2008.04.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Nikolovski Z, Barbaresi S, Cable T, Peric R. Evaluating the influence of differences in methodological approach on metabolic thresholds and fat oxidation points relationship. Eur J Sport Sci. 2021;21(1):61–68. PubMed ID: 31944160 doi:10.1080/17461391.2020.1717640

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Peric R, Meucci M, Bourdon PC, Nikolovski Z. Does the aerobic threshold correlate with the maximal fat oxidation rate in short stage treadmill tests? J Sports Med Phys Fitness. 2018;58(10):14127. PubMed ID: 28745473

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Ramos-Jiménez A, Hernández-Torres RP, Torres-Durán PV, et al. The Respiratory exchange ratio is associated with fitness indicators both in trained and untrained men: a possible application for people with reduced exercise tolerance. Clin Med Circ Respirat Pulm Med. 2008;2:19. PubMed ID: 21157516

    • Search Google Scholar
    • Export Citation
  • 25.

    Riddell MC, Jamnik VK, Iscoe KE, Timmons BW, Gledhill N. Fat oxidation rate and the exercise intensity that elicits maximal fat oxidation decreases with pubertal status in young male subjects. J Appl Physiol. 2008;105(2):74248. PubMed ID: 18535137 doi:10.1152/japplphysiol.01256.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Tan S, Wang J, Cao L. Exercise training at the intensity of maximal fat oxidation in obese boys. Appl Physiol Nutr Metab. 2016;41(1):4954. PubMed ID: 26701116 doi:10.1139/apnm-2015-0174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Tolfrey K, Jeukendrup AE, Batterham AM. Group- and individual-level coincidence of the ‘Fatmax’ and lactate accumulation in adolescents. Eur J Appl. Physiol. 2010;109(6):114553. PubMed ID: 20376480 doi:10.1007/s00421-010-1453-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Venables MC, Achten J, Jeukendrup AE. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J Appl Physiol. 2005;98(1):16067. PubMed ID: 15333616 doi:10.1152/japplphysiol.00662.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Wang J, Tan S, Cao L. Exercise training at the maximal fat oxidation intensity improved health-related physical fitness in overbody mass middle-aged women. J Exerc Sci Fit. 2015;13(2):11116. PubMed ID: 29541108 doi:10.1016/j.jesf.2015.08.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Zakrzewski JK, Tolfrey K. Comparison of fat oxidation over a range of intensities during treadmill and cycling exercise in children. Eur J Appl Physiol. 2012;112(1):16371. PubMed ID: 21509589 doi:10.1007/s00421-011-1965-5

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1313 951 120
Full Text Views 39 20 4
PDF Downloads 52 22 5