Acute Cardiometabolic and Perceptual Responses to Individual and Group-Based Body-Weight Resistance Exercise in Girls

in Pediatric Exercise Science

Click name to view affiliation

Jeanette M. Ricci Michigan State University

Search for other papers by Jeanette M. Ricci in
Current site
Google Scholar
PubMed
Close
*
,
Katharine D. Currie Michigan State University

Search for other papers by Katharine D. Currie in
Current site
Google Scholar
PubMed
Close
*
,
Todd A. Astorino California State University

Search for other papers by Todd A. Astorino in
Current site
Google Scholar
PubMed
Close
*
, and
Karin A. Pfeiffer Michigan State University

Search for other papers by Karin A. Pfeiffer in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Girls’ acute responses to group-based high-intensity interval exercise (HIIE) are not well characterized. Purpose: To compare acute responses to treadmill-based HIIE (TM) and body-weight resistance exercise circuit (CIRC) and to CIRC performed in a small-group setting (group CIRC). Method: Nineteen girls (9.1 [1.1] y) completed exercise testing on a TM to determine peak oxygen uptake, peak heart rate (HRpeak), and maximal aerobic speed. The TM involved eight 30-second sprints at 100% maximal aerobic speed. The CIRC consisted of 8 exercises of maximal repetitions performed for 30 seconds. Each exercise bout was followed by 30 seconds of active recovery. The blood lactate concentration was assessed preexercise and postexercise. The ratings of perceived exertion, affective valence, and enjoyment were recorded at preexercise, Intervals 3 and 6, and postexercise. Results: The mean heart rate was higher during group CIRC (92% [7%] HRpeak) than CIRC (86% [7%] HRpeak) and TM (85% [4%] HRpeak) (ηp2 = .49). The mean oxygen uptake equaled 76% (11%) of the peak oxygen uptake for CIRC and did not differ from TM (d = 0.02). The CIRC elicited a greater postexercise blood lactate concentration versus TM (5.8 [1.7] vs 1.4 [0.4] mM, d = 3.61). The perceptual responses were similar among conditions (P > .05), and only the rating of perceived exertion increased during exercise (ηp2 = .78). Conclusion: Whether performed individually or in a small group, CIRC represents HIIE and may be a feasible alternative to running-based HIIE.

Ricci, Currie, and Pfeiffer are with the Michigan State University, East Lansing, MI, USA. Astorino is with the Department of Kinesiology, California State University—San Marcos, San Marcos, CA, USA.

Ricci (riccijea@msu.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Akkermans MA, Sillen MJ, Wouters EF, Spruit MA. Validation of the oxycon mobile metabolic system in healthy subjects. J Sports Sci Med. 2012;11(1):1823. PubMed ID: 24137070.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Armstrong N, Welsman J. Pediatric Exercise Science and Medicine. Oxford University Press; 2008.

  • 3.

    Beauchamp MR, Carron AV, McCutcheon S, Harper O. Older adults’ preferences for exercising alone versus in groups: considering contextual congruence. Ann Behav Med. 2007;33(2):2006. PubMed ID: 17447872 doi:10.1007/BF02879901

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Biddle SJ, Gorely T, Pearson N, Bull FC. An assessment of self-reported physical activity instruments in young people for population surveillance: Project ALPHA. Int J Behav Nutr Phy. 2011; 8(1):1. PubMed ID: 21194492 doi:10.1186/1479-5868-8-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Bond B, Cockcroft EJ, Williams CA, et al. Two weeks of high-intensity interval training improves novel but not traditional cardiovascular disease risk factors in adolescents. Am J Physiol Heart Circ Physiol. 2015;309(6):H103947. PubMed ID: 26254333 doi:10.1152/ajpheart.00360.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Bond B, Weston KL, Williams CA, Barker AR. Perspectives on high-intensity interval exercise for health promotion in children and adolescents. Open Access J Sports Med. 2017;8:24365. PubMed ID: 29225481 doi:10.2147/OAJSM.S127395

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bungum T, Dowda M, Weston A, Trost S, Pate R. Correlates of physical activity in male and female youth. Pediatr Exerc Sci. 2000;12(1):719. doi:10.1123/pes.12.1.71

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Burns SF, Oo HH, Tran AT. Effect of sprint interval exercise on postexercise metabolism and blood pressure in adolescents. Int J Sport Nutr Exerc Metab. 2012;22(1):4754. PubMed ID: 22248500 doi:10.1123/ijsnem.22.1.47

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Carson V, Rinaldi RL, Torrance B, et al. Vigorous physical activity and longitudinal associations with cardiometabolic risk factors in youth. Int J Obes (Lond). 2014;38(1):1621. doi:10.1038/ijo.2013.135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    CDC.gov [Internet]. A SAS Program for the 2000 CDC Growth Charts (ages 0 to <20 years) [cited 2020 May 02]. https://www.cdc.gov/nccdphp/dnpao/growthcharts/resources/sas.htm.

    • Search Google Scholar
    • Export Citation
  • 11.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale (NJ): Lawrence Erlbaum Associates; 1988.

  • 12.

    Corte de Araujo AC, Roschel H, Picanço AR, et al. Similar health benefits of endurance and high-intensity interval training in obese children. PLoS One. 2012;7(8):e42747. PubMed ID: 22880097 doi:10.1371/journal.pone.0042747

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Costigan SA, Eather N, Plotnikoff RC, et al. Preliminary efficacy and feasibility of embedding high intensity interval training into the school day: a pilot randomized controlled trial. Prev Med Rep. 2015;2:9739. PubMed ID: 26844177 doi:10.1016/j.pmedr.2015.11.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Dias KA, Ingul CB, Tjønna AE, et al. Effect of high-intensity interval training on fitness, fat mass and cardiometabolic biomarkers in children with obesity: a randomised controlled trial. Sports Med. 2017;48(3):73346. doi:10.1007/s40279-017-0777-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Ebesutani C, Jennifer R, Ashley S, Steven R, Charmaine H-M, Bruce C. The 10-item positive and negative affect schedule for children, child and parent shortened versions: application of item response theory for more efficient assessment. J Psychopathol Behav Assess 2012;34(2):191203. doi:10.1007/s10862-011-9273-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Engel FA, Wagner MO, Schelhorn F, et al. Classroom-based micro-sessions of functional high-intensity circuit training enhances functional strength but not cardiorespiratory fitness in school children-a feasibility study. Front Public Health. 2019;7:291. PubMed ID: 31799229 doi:10.3389/fpubh.2019.00291

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Faigenbaum AD, Kang J, Ratamess NA, et al. Acute cardiometabolic responses to medicine ball interval training in children. Int J Exerc Sci. 2018;11(4):88699. PubMed ID: 29997735.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Faigenbaum A, Kang J, Ratamess NA, et al. Acute cardiometabolic responses to multi-modal integrative neuromuscular training in children. J Funct Morphol Kinesiol. 2019;4(2):886–899. PubMed ID: 33467354 doi:10.3390/jfmk4020039

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Fox LD, Rejeski WJ, Gauvin L. Effects of leadership style and group dynamics on enjoyment of physical activity. Am J Health Promot. 2000;14(5):27783. PubMed ID: 11009853 doi:10.4278/0890-1171-14.5.277

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hardy C, Rejeski W. Not what, but how one feels: the measurement of affect during exercise. J Sport Exerc Psychol. 1989;11:30417. doi:10.1123/jsep.11.3.304

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Harris NK, Dulson DK, Logan GRM, Warbrick IB, Merien FLR, Lubans DR. Acute responses to resistance and high-intensity interval training in early adolescents. J Strength Cond Res. 2017;31(5):117786. PubMed ID: 27537411 doi:10.1519/JSC.0000000000001590

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Howe CA, Clevenger KA, McElhiney D, Mihalic C, Ragan MA. Measurement of children’s real-time physical activity enjoyment using a new visual analog scale. J Phys Act Health. 2019;16(6):40615. PubMed ID: 31104555 doi:10.1123/jpah.2018-0074

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Juvancic-Heltzel JA, Glickman EL, Barkley JE. The effect of variety on physical activity: a cross-sectional study. J Strength Cond Res. 2013;27(1):24451. PubMed ID:22395266 doi:10.1519/JSC.0b013e3182518010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Katzmarzyk PT, Denstel KD, Beals K, et al. Results from the United States of America’s 2016 report card on physical activity for children and youth. J Phys Act Health. 2016;13(11 Suppl 2):S307S13. doi:10.1123/jpah.2016-0321

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Ketelhut S, Kircher E, Ketelhut SR, Wehlan E, Ketelhut K. Effectiveness of multi-activity, high-intensity interval training in school-aged children. Int. J. Sports Med.. 2020;41(4):22732. PubMed ID: 31935779 doi: 10.1055/a-1068-9331

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kowalski KC, Crocker PRE, Faulkner RA. Validation of the physical activity questionnaire for older children. Pediatr Exerc Sci. 1997;9(2):17486. doi:10.1123/pes.9.2.174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Kriellaars DJ, Cairney J, Bortoleto MA, Kiez TK, Dudley D, Aubertin P. The impact of circus arts instruction in physical education on the physical literacy of children in grades 4 and 5. J Teach Phys Educ. 2019;38(2):16270. doi:10.1123/jtpe.2018-0269

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Malik AA, Williams CA, Bond B, Weston KL, Barker AR. Acute cardiorespiratory, perceptual and enjoyment responses to high-intensity interval exercise in adolescents. Eur J Sport Sci. 2017;17(10):133542. PubMed ID: 28859545 doi:10.1080/17461391.2017.1364300

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Malik AA, Williams CA, Weston KL, Barker AR. Perceptual responses to high- and moderate-intensity interval exercise in adolescents. Med Sci Sports Exerc. 2018;50(5):102130. PubMed ID: 29206781 doi:10.1249/MSS.0000000000001508

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Malik AA, Williams CA, Weston KL, Barker AR. Perceptual and cardiorespiratory responses to high-intensity interval exercise in adolescents: does work intensity matter? J Sports Sci Med. 2019;18(1):112. PubMed ID: 30787646.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):68994. PubMed ID:11932580 doi:0195-9131/02/3404-0689

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Motl RW, Dishman RK, Saunders R, Dowda M, Felton G, Pate RR. Measuring enjoyment of physical activity in adolescent girls. Am J Prev Med. 2001;21(2):1107. PubMed ID: 11457630 doi:10.1016/S0749-3797(01)00326-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Pfeiffer KA, Pivarnik JM, Womack CJ, Reeves MJ, Malina RM. Reliability and validity of the Borg and OMNI rating of perceived exertion scales in adolescent girls. Med Sci Sports Exerc. 2002;34(12):205761. PubMed ID: 12471316 doi:10.1249/01.MSS.0000039302.54267.BF

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Prusak KA, Treasure DC, Darst PW, Pangrazi RP. The effects of choice on the motivation of adolescent girls in physical education. J Teach Phys Educ. 2004;23(1):1929. doi: 10.1123/jtpe.23.1.19

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Racil G, Zouhal H, Elmontassar W, et al. Plyometric exercise combined with high-intensity interval training improves metabolic abnormalities in young obese females more so than interval training alone. Appl Physiol Nutr Metab. 2015;41(1):1039. PubMed ID: 26701117 doi:10.1139/apnm-2015-0384

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Ricci J, Currie K, Astorino TA, Pfeiffer K. Cardiometabolic and perceptual responses to body-weight resistance high-intensity interval exercise in boys. Pediatr Exerc Sci. 2020. Advance online publication. doi:10.1123/pes.2020-0040

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Roloff Z, Dicks N, Krynski L, Hartman M, Ekkekakis P, Pettitt R. Ratings of affective valence closely track changes in oxygen uptake: application to high-intensity interval exercise. Perf Enhanc Health. 2020;7(3–4):100158. doi:10.1016/j.peh.2020.100158

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Russell JA, Weiss A, Mendelsohn GA. Affect grid: a single-item scale of pleasure and arousal. J Pers Soc Psychol. 1989;57(3):493.

  • 39.

    Scanlan TK, Stein GL, Ravizza K. An in-depth study of former elite figure skaters: II. Sources of enjoyment. J Sport Exerc Psychol. 1989;11(1):6583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Schneider M, Dunn A, Cooper D. Affect, exercise, and physical activity among healthy adolescents. J Sport Exerc Psychol. 2009;31(6):70623. PubMed ID: 20384008 doi:10.1123/jsep.31.6.706

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Tallon CM, Simair RG, Koziol AV, Ainslie PN, McManus AM. Intracranial vascular responses to high-intensity interval exercise and moderate-intensity steady-state exercise in children. Pediatr Exerc Sci. 2019;31(3):2905. PubMed ID: 30832540 doi:10.1123/pes.2018-0234

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Thackray AE, Barrett LA, Tolfrey K. Acute high-intensity interval running reduces postprandial lipemia in boys. Med Sci Sports Exerc. 2013;45(7):127784. PubMed ID: 23299762 doi:10.1249/MSS.0b013e31828452c1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Tottori N, Morita N, Ueta K, Fujita S. Effects of high intensity interval training on executive function in children aged 8-12 years. Int J Environ Res Public Health. 2019;16(21):4127. doi:10.3390/ijerph16214127

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Utter AC, Robertson RJ, Nieman DC, Kang J. Children’s OMNI Scale of Perceived Exertion: walking/running evaluation. Med Sci Sports Exerc. 2002;34(1):13944. PubMed ID: 11782659 doi:10.1097/00005768-200201000-00021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Weston KL, Azevedo LB, Bock S, Weston M, George KP, Batterham AM. Effect of novel, school-based high-intensity interval training (HIT) on cardiometabolic health in adolescents: project FFAB (fun fast activity blasts) – an exploratory controlled before-and-after trial. PLoS One. 2016;11(8):e0159116. PubMed ID: 27486660 doi: 10.1371/journal.pone.0159116

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1566 697 22
Full Text Views 26 8 1
PDF Downloads 34 13 1