Evaluation of Left Ventricular Outflow Gradients During Staged Exercise Stress Echocardiography Helps Differentiate Pediatric Patients With Hypertrophic Cardiomyopathy From Athletes and Normal Subjects

in Pediatric Exercise Science

Click name to view affiliation

Mansi Gaitonde Emory University

Search for other papers by Mansi Gaitonde in
Current site
Google Scholar
PubMed
Close
*
,
Shannon Jones Emory University

Search for other papers by Shannon Jones in
Current site
Google Scholar
PubMed
Close
*
,
Courtney McCracken Emory University

Search for other papers by Courtney McCracken in
Current site
Google Scholar
PubMed
Close
*
,
Matthew E. Ferguson Children’s Healthcare of Atlanta

Search for other papers by Matthew E. Ferguson in
Current site
Google Scholar
PubMed
Close
*
,
Erik Michelfelder Emory University

Search for other papers by Erik Michelfelder in
Current site
Google Scholar
PubMed
Close
*
,
Ritu Sachdeva Emory University

Search for other papers by Ritu Sachdeva in
Current site
Google Scholar
PubMed
Close
*
, and
William Border Emory University

Search for other papers by William Border in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Background: Elevated left ventricular outflow tract (LVOT) gradients during exercise can occur in patients with hypertrophic cardiomyopathy (HCM) as well as in athletes and normal controls. The authors’ staged exercise protocol calls for imaging at rest and during each stage of exercise to evaluate the mechanism of LVOT obstruction at each stage. They investigated whether this staged approach helps differentiate HCM from athletes and normal controls. Methods: They reviewed pediatric exercise stress echocardiograms completed between January 2009 and October 2017 at their center and identified those with gene-positive HCM, athlete’s heart, and normal controls. Children with inducible obstruction (those with no LVOT gradient at rest who developed a LVOT peak gradient > 25 mm Hg during exercise) were included. LVOT peak gradient, velocity time integral, acceleration time, and deceleration time were measured at rest, submaximal stages, and peak exercise. Results: Compared with athletes, HCM patients had significantly higher LVOT peak gradients at rest (P = .019), stage 1 of exercise (P = .002), and peak exercise (P = .051), as well as a significantly higher change in LVOT peak gradient from rest to stage 1 (P = .016) and from rest to peak (P = .038). The acceleration time/deceleration time ratio of the LVOT Doppler was significantly lower in HCM patients compared with normal controls at peak exercise. Conclusions: The HCM patients who develop elevated LVOT gradients at peak exercise typically manifest early obstruction in the submaximal stages of exercise, which helps to differentiate them from athletes and normal controls.

Gaitonde, Jones, Ferguson, Michelfelder, Sachdeva, and Border are with the Division of Pediatric Cardiology, Department of Pediatrics, Emory University, Atlanta, GA, USA. Ferguson, Michelfelder, Sachdeva, and Border are with the Cardiovascular Imaging Research Core, Children’s Healthcare of Atlanta, Atlanta, GA, USA. McCracken is with the Pediatric Biostatistics Core, Emory University, Atlanta, GA, USA.

Gaitonde (gaitondem@kidsheart.com) is corresponding author.

Supplementary Materials

    • Supplementary Material (PDF 263 KB)
  • Collapse
  • Expand
  • 1.

    Baggish AL, Battle RW, Beaver TA, et al. Recommendations on the use of multimodality cardiovascular imaging in young adult competitive athletes: a report from the american society of echocardiography in collaboration with the society of cardiovascular computed tomography and the society for card. J Am Soc Echocardiogr. 2020;33(5):523549. PubMed ID: 32362332 doi:10.1016/j.echo.2020.02.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Campbell R, Manyari DE, McKenna WJ, et al. What is the mechanism of abnormal blood pressure response on exercise in hypertrophic cardiomyopathy? J Am Coll Cardiol. 2003;41(11):2102. PubMed ID: 12798589 doi:10.1016/S0735-1097(03)00364-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Ciampi Q, Olivotto I, Gardini C, et al. Prognostic role of stress echocardiography in hypertrophic cardiomyopathy: the international stress echo registry. Int J Cardiol. 2016;219:331338. PubMed ID: 27348413 doi:10.1016/j.ijcard.2016.06.044

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Erickson CC. Discrimination of the athlete’s heart from real disease by electrocardiogram and echocardiogram. Cardiol Young. 2017;27:S80S88. PubMed ID: 28084953 doi:10.1017/S1047951116002286

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ferguson M, Sachdeva R, Gillespie SE, Morrow G, Border W . Tissue Doppler imaging during exercise stress echocardiography demonstrates a mechanism for impaired exercise performance in children with hypertrophic cardiomyopathy. Echocardiography. 2016;33(11):1718–1725. PubMed ID: 27545012 doi:10.1111/echo.13316

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Finocchiaro G, Dhutia H, D’Silva A, et al. Role of doppler diastolic parameters in differentiating physiological left ventricular hypertrophy from hypertrophic cardiomyopathy. J Am Soc Echocardiogr. 2018;31(5):606613. PubMed ID: 29482976 doi:10.1016/j.echo.2017.11.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Frenneaux MP, Counihan PJ, Caforio ALP, Chikamori T, McKenna WJ. Abnormal blood pressure response during exercise in hypertrophic cardiomyopathy. Circulation. 1990;82(6):19952002. PubMed ID: 2242524 doi:10.1161/01.CIR.82.6.1995

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Galderisi M, Cardim N, D’Andrea A. The multi-modality cardiac imaging approach to the Athlete’s heart: an expert consensus of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(4):353. PubMed ID: 25681828 doi:10.1093/ehjci/jeu323

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Lancellotti P, Pellikka PA, Budts W, et al. The clinical use of stress echocardiography in non-ischaemic heart disease: recommendations from the European association of cardiovascular imaging and the American society of echocardiography. J Am Soc Echocardiogr. 2017;30(2):101138. PubMed ID: 28164802 doi:10.1016/j.echo.2016.10.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Maron BJ. Distinguishing hypertrophic cardiomyopathy from athlete’s heart physiological remodelling: clinical significance, diagnostic strategies and implications for preparticipation screening. Br J Sports Med. 2009;43(9):649656. PubMed ID: 19734498 doi:10.1136/bjsm.2008.054726

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Neubauer S, Kolm P, Ho CY, et al. Distinct subgroups in hypertrophic cardiomyopathy in the NHLBI HCM registry. J Am Coll Cardiol. 2019;74(19):23332345. PubMed ID: 31699273 doi:10.1016/j.jacc.2019.08.1057

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Ommen SR, Mital S, Burke MA, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2020;76(25):e159e240. PubMed ID: 33229116 doi:10.1016/j.jacc.2020.08.045

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Pagourelias ED, Efthimiadis GK, Kouidi E, et al. Efficacy of various “classic” echocardiographic and laboratory indices in distinguishing the “gray zone” between athlete’s heart and hypertrophic cardiomyopathy: a pilot study. Echocardiography. 2013;30(2):131139. PubMed ID: 23167844 doi:10.1111/echo.12014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Parato VM, Antoncecchi V, Sozzi F, et al. Echocardiographic diagnosis of the different phenotypes of hypertrophic cardiomyopathy. Cardiovasc Ultrasound. 2016;14(1):30. doi:10.1186/s12947-016-0072-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Paridon SM, Alpert BS, Boas SR, et al. Clinical stress testing in the pediatric age group: a statement from the American Heart Association council on cardiovascular disease in the young, committee on atherosclerosis, hypertension, and obesity in youth. Circulation. 2006;113(15):19051920. PubMed ID: 16567564 doi:10.1161/CIRCULATIONAHA.106.174375

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Pelliccia A, Maron MS, Maron BJ. Assessment of left ventricular hypertrophy in a trained athlete: differential diagnosis of physiologic athlete’s heart from pathologic hypertrophy. Prog Cardiovasc Dis. 2012;54(5):387396. PubMed ID: 22386289 doi:10.1016/j.pcad.2012.01.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Pollick C, Shmueli H, Maalouf N, Zadikany RH. Left ventricular cavity obliteration: mechanism of the intracavitary gradient and differentiation from hypertrophic obstructive cardiomyopathy. Echocardiography. 2020;37(6):822831. PubMed ID: 32441850 doi:10.1111/echo.14710

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Rowin EJ, Maron BJ, Olivotto I, Maron MS. Role of exercise testing in hypertrophic cardiomyopathy. JACC Cardiovasc Imaging. 2017;10(11):13741386. PubMed ID: 29122139 doi:10.1016/j.jcmg.2017.07.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Rowland T. Morphologic features of the “athlete’s heart” in children: a contemporary review. Pediatr Exerc Sci. 2016;28(3):345352. PubMed ID: 26694944 doi:10.1123/pes.2015-0239

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Rowland T, Potts J, Potts T, Sandor G, Goff D, Ferrone L. Cardiac responses to progressive exercise in normal children: a synthesis. Med Sci Sports Exerc. 2000;32(2):253. PubMed ID: 10694103 doi:10.1097/00005768-200002000-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Sharma S, Elliott PM, Whyte G, et al. Utility of metabolic exercise testing in distinguishing hypertrophic cardiomyopathy from physiologic left ventricular hypertrophy in athletes. J Am Coll Cardiol. 2000;36(3):864870. PubMed ID: 10987612 doi:10.1016/S0735-1097(00)00816-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Suzuki K, Akashi YJ. Exercise stress echocardiography in hypertrophic cardiomyopathy. J Echocardiogr. 2017;15(3):110117. PubMed ID: 28501918 doi:10.1007/s12574-017-0338-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Wasfy MM, Weiner RB. Differentiating the athlete’s heart from hypertrophic cardiomyopathy. Curr Opin Cardiol. 2015;30(5):500505. PubMed ID: 26196658 doi:10.1097/HCO.0000000000000203

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Wittlieb-Weber CA, Cohen MS, McBride MG, et al. Elevated left ventricular outflow tract velocities on exercise stress echocardiography may be a normal physiologic response in healthy youth. J Am Soc Echocardiogr. 2013;26(12):13721378. PubMed ID: 24139056 doi:10.1016/j.echo.2013.08.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Zywica K, Jenni R, Pellikka PA, Faeh-Gunz A, Seifert B, Attenhofer Jost CH. Dynamic left ventricular outflow tract obstruction evoked by exercise echocardiography: prevalence and predictive factors in a prospective study. Eur J Echocardiogr. 2008;9(5):665671. PubMed ID: 18490319 doi:10.1093/ejechocard/jen070

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1594 781 55
Full Text Views 18 5 0
PDF Downloads 24 6 0