Influence of Insulin Application Time and High-Intensity Intermittent Exercise on Hypoglycemic Risk in Adolescents With Type 1 Diabetes

in Pediatric Exercise Science

Click name to view affiliation

Valderi de Abreu de Lima Federal University of Paraná

Search for other papers by Valderi de Abreu de Lima in
Current site
Google Scholar
PubMed
Close
*
,
Gabriel Ribeiro Cordeiro Midwestern Paraná State University

Search for other papers by Gabriel Ribeiro Cordeiro in
Current site
Google Scholar
PubMed
Close
*
,
Luis Paulo Gomes Mascarenhas Midwestern Paraná State University

Search for other papers by Luis Paulo Gomes Mascarenhas in
Current site
Google Scholar
PubMed
Close
*
,
Suzana Nesi França Federal University of Paraná

Search for other papers by Suzana Nesi França in
Current site
Google Scholar
PubMed
Close
*
,
Juliana Pereira Decimo Federal University of Paraná

Search for other papers by Juliana Pereira Decimo in
Current site
Google Scholar
PubMed
Close
*
,
Andréia Araújo Porchat de leão Federal University of Paraná

Search for other papers by Andréia Araújo Porchat de leão in
Current site
Google Scholar
PubMed
Close
*
,
Camila Kapp Fritz Federal University of Paraná

Search for other papers by Camila Kapp Fritz in
Current site
Google Scholar
PubMed
Close
*
, and
Neiva Leite Federal University of Paraná

Search for other papers by Neiva Leite in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: The study analyzed the influence of exercise on hypoglycemia episodes postexercise and in the subsequent 24 hours in children and adolescents with type 1 diabetes. Methods: Thirty young people performed the same protocol of physical exercises for 1 hour (Ex1h) and 2 hours (Ex2h) after the administration of insulin. They performed 30 minutes of exercise on a cycle ergometer with a load of 60% of maximal oxygen uptake, interspersed with maximum intensity sprints lasting 10 seconds every 5 minutes. Results: Regarding the occurrence of hypoglycemia, in the 8 hours following the exercises, there was no occurrence in Ex1h (χ2 = 0.001; P = .0001) and a greater proportion for Ex2h (n = 71 episodes, 53.8%), while Ex1h had a higher number of nocturnal hypoglycemic episodes (n = 60, 71.4%) compared with Ex2h (n = 31, 23.1%, χ2 = 49.521, P = .0001), Ex1h triggered a lower number of hypoglycemia (n = 84) than Ex2h (n = 134, χ2 = 11.504, P = .001). There was a greater reduction in the average amount of fast-acting insulin administered the day after Ex1h compared with Ex2h (P = .031). Conclusions: Intermittent exercise performed 1 hour after insulin administration shows a lower risk of hypoglycemia within 8 hours after exercise, as well as a reduction in insulin the following day.

Lima and Leite are with the Quality of Life Center—Department of Physical Education, Federal University of Paraná, Curitiba, Paraná, Brazil. Cordeiro and Mascarenhas are with Midwestern Paraná State University, Irati, Paraná, Brazil. França, Decimo, de leão, and Fritz are with Child and Adolescent Health—Federal University of Paraná, Curitiba, Paraná, Brazil.

Cordeiro (g.rc1997@hotmail.com) is corresponding author.
  • Collapse
  • Expand
  • 1.

    American College of Sports Medicine—ACSM. Manual for Health-Related Physical Fitness Assessment. Rio de Janeiro: Guanabara Koogan; 2006.

    • Search Google Scholar
    • Export Citation
  • 2.

    American Diabetes Association. Children and adolescents: standards of medical care in diabetes—2021. Diabetes Care. 2021;44(suppl 1):S180S199. doi:10.2337/DC21-S013

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Austin A, Warty V, Janosky J, Arslanian S. The relationship of physical fitness to lipid and lipoprotein (a) levels in adolescents with IDDM. Diabetes Care. 1993;16(2):4215. PubMed ID: 8432211 doi:10.2337/diacare.16.2.421

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bouchard CA, Tremblay A, Leblanc C, et al. A method to assess energy expenditure in children and adults. Am J Clin Nutr. 1983;37(3):4617. PubMed ID: 6829488 doi:10.1093/ajcn/37.3.461

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Brazeau AS, Rabasa LR, Strychar I, et al. Barriers to physical activity among patients with type 1 diabetes. Diabetes Care. 2008;31(11):21089. PubMed ID: 18689694 doi:10.2337/dc08-0720

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Brazilian Society of Diabetes. Targets in the clinical and metabolic control of children and adolescents with type 1 diabetes mellitus. In: SBD Guidelines. São Paulo: Clannad. 2014;1:113.

    • Search Google Scholar
    • Export Citation
  • 7.

    Chimen M, Kennedy A, Nirantharakumar K, et al. What are the health benefits of physical activity in type 1 diabetes mellitus? A literature review. Diabetologia. 2012;55(3):542551. doi:10.1007/s00125-011-2403-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Cockcroft EJ, Moudiotis C, Kitchen J, et al. High-intensity interval exercise and glycemic control in adolescents with type one diabetes mellitus: a case study. Physiology Rep. 2017;5(13):e13339. doi:10.14814/phy2.13339

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Czenczek-Lewandowska E, Leszczak J, Baran J, et al. Levels of physical activity in children and adolescents with type 1 diabetes in relation to the healthy comparators and to the method of insulin therapy used. Int J Environ Res. 2019;16(18):3498. doi:10.3390/ijerph16183498

    • Search Google Scholar
    • Export Citation
  • 10.

    Davey RJ, Howe W, Paramalingam N, et al. The effect of midday moderate-intensity exercise on postexercise hypoglycemia risk in individuals with type 1 diabetes. Diabetes Care. 2013;98(7):290814. doi:10.1210/jc.2013-1169

    • Search Google Scholar
    • Export Citation
  • 11.

    Dashiff CJ, Mccaleb A, Cull V. Self-care of young adolescents with type 1 diabetes. Pediatr Nurs. 2006;21(3):22232. doi:10.1016/j.pedn.2005.07.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Diabetes Research in children network (DIRECTNET) Study Group. Prevention of hypoglycemia during exercise in children with type 1 diabetes by suspending basal insulin. Diabetes Care. 2006;29(10):22004. doi:10.2337/dc06-0495

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Dubé MC, Lavoie C, Weisnagel SJ. Glucose or intermittent high-intensity exercise in glargine/glulisine. users with T1DM. Med Sci Sports Exerc. 2013;45(1):37. PubMed ID: 22895370 doi:10.1249/MSS.0b013e31826c6ad3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Dubé MC, Lavoie C, Weisnagel SJ. Nutritional strategies to prevent hypoglycemia at exercise in diabetic adolescents. Med Sci Sports Exerc. 2012;44(8):142732. PubMed ID: 22357303 doi:10.1249/MSS.0b013e3182500a35

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Funai K, Schweitzer GG, Sharma N, et al. Increased AS160 phosphorylation, but not TBC1D1 phosphorylation, with increased post exercise insulin sensitivity in rat skeletal muscle. Am J Physiol Endocrinol Metab. 2009;297(1):24251. doi:10.1152/ajpendo.00194.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Guelfi KJ, Jones TW, Fournier PA. Intermittent high-intensity exercise does not increase the risk of early post exercise hypoglycemia in individuals with type 1 diabetes. Diabetes Care. 2005;28(2):41618. PubMed ID: 15677802 doi:10.2337/diacare.28.2.416

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Guelfi KJ, Jones TW, Fournier PA. The decline in blood glucose levels is less with intermittent high-intensity compared with moderate exercise in individuals with type 1 diabetes. Diabetes Care. 2005;28(6):128994. PubMed ID: 15920041 doi:10.2337/diacare.28.6.1289

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Guelfi KJ, Jones TW, Fournier PA. New insights on hypoglycemia risk management associated with intermittent high-intensity exercise in individuals with type 1 diabetes mellitus: implications for existing guidelines. Sports Med. 2007;37(11):93746. PubMed ID: 17953465 doi:10.2165/00007256-200737110-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Guelfi KJ, Ratnam N, Smythe GA, et al. Effect of intermittent high-intensity compared with continuous moderate exercise on glucose production and utilization in individuals with type 1 diabetes. Am J PhysiolEndocrinol Metab. 2007;292(3):E86570. doi:10.1152/ajpendo.00533.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Iscoe KE, Riddell MC. Continuous moderate-intensity exercise with or without intermittent high-intensity work: effects on acute and late glycaemia in athletes with Type 1 diabetes mellitus. Diabet Med. 2011;28(7):82432. PubMed ID: 21388440 doi:10.1111/j.1464-5491.2011.03274.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Adolfsson P, Riddell MC, Taplin CE, et al. ISPAD clinical practice consensus guidelines 2018: exercise in children and adolescents with diabetes. Pediatr Diabetes. 2018;19(suppl 27):205226. PubMed ID: 30133095 doi:10.1111/pedi.12755

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Jimenez CC, Matthew HC, James TC, et al. National athletic trainers’ association position statement: management of the athlete with type 1 diabetes mellitus. J Athl Train. 2007;31(42):53645.

    • Search Google Scholar
    • Export Citation
  • 23.

    Lima VA, Mascarenhas LPG, Decimo JP, et al. Physical activity levels of adolescents with type 1 diabetes. Pediatr Exerc Sci. 2017;29(2):21319. PubMed ID: 28050932 doi:10.1123/pes.2016-0199

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Maggio AB, Hofer MF, Martin XE, et al. Reduction of the level of physical activity and cardiorespiratory fitness in children with chronic diseases. Eur J Pediatr. 2010;169(10):118793. PubMed ID: 20411275 doi:10.1007/s00431-010-1199-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Maran A, Pavan P, Bonsembiante B, et al. Continuous glucose monitoring reveals delayed nocturnal hypoglycemia after intermittent high-intensity exercise in nontrained patients with type 1 diabetes. Diabetes Technol Ther. 2010;12(10):76368. PubMed ID: 20807120 doi:10.1089/dia.2010.0038

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Marques RMB, Fornés NS, Stringhini MLF. Socioeconomic, demographic, nutritional, and physical activity factors in the glycemic control of adolescents with type 1 diabetes mellitus. Arq Bras Endocrinol Metabol. 2011;55(3):194202. doi:10.1590/s0004-27302011000300004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Mascarenhas LPG, Decimo JP, Lima VA, et al. Physical exercise in type 1 diabetes: recommendations and care. Motriz. 2016;22(4):22330. doi:10.1590/S1980-6574201600040001

    • Search Google Scholar
    • Export Citation
  • 28.

    McMahon SK, Ferreira LD, Ratnam N, et al. Glucose requirements to maintain euglycemia after moderate-intensity afternoon exercise in adolescents with type 1 diabetes are increased in a biphasic manner. J Clin Endocrinol Metab. 2007;92(3):96368. PubMed ID: 17118993 doi:10.1210/jc.2006-2263

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Mercuri N, Arrechea V. Physical activity and diabetes mellitus. Clinical Diabetes. 2001;4:34749.

  • 30.

    Metcalf KM, Singhvi A, Tsalikian E, et al. Effects of moderate-to-vigorous intensity physical activity on overnight and next-day hypoglycemia in active adolescents with type 1 diabetes. Diabetes Care. 2014;37(5):127278. PubMed ID: 24574352 doi:10.2337/dc13-1973

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Miculis CP, Mascarenha SLP, Boguszewski MCS, et al. Physical activity in children with type 1 diabetes. J Pediatr. 2010;86(4):27178.

    • Search Google Scholar
    • Export Citation
  • 32.

    Perry TL, Mann JI, Lewis-barned NJ, et al. Lifestyle intervention in people with insulin-dependent diabetes mellitus (IDDM). Eur J Clin Nutr. 1997;51(11):75763. PubMed ID: 9368810 doi:10.1038/sj.ejcn.1600478

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Rebesco DB, França SN, Lima VA, et al. Different amounts of moderate to vigorous physical activity and change in glycemic variability in adolescents with type 1 diabetes: is there dose-response relationship? Arch Endocrinol Metab. 2020;64(3):31218. PubMed ID: 32555999 doi:10.20945/2359-3997000000254

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Riddell MC, Perkins BA. Type 1 diabetes and exercise. part I: applications of exercise physiology in patient management during vigorous activity. Can J Diab. 2006;30(1):6771. doi:10.1016/S1499-2671(06)01010-0

    • Search Google Scholar
    • Export Citation
  • 35.

    Riddell MC, Zaharieva DP, Tansey M, et al. Individual glucose responses to prolonged moderate intensity aerobic exercise in adolescents with type 1 diabetes: the higher they start, the harder they fall. Pediatr Diabetes. 2019;20(1):99106. PubMed ID: 30467929 doi:10.1111/pedi.12799

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Rizza RA, Mandarino LJ, Gerich JE. Dose-response characteristics for the effects of insulin in the production and use of glucose in man. Am J Physiol. 1981;240(6):e630639. doi:10.1152/ajpendo.1981.240.6.E630

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Rowland TW, Goff D, Martel L, et al. Influence of cardiac functional capacity on gender differences in maximal oxygen uptake in children. Chest J.. 2000;117(3):62935. doi:10.1378/chest.117.3.629

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Tansey MJ, Tsalikian E, Beck RW, et al. The effects of aerobic exercise on glucose and counterregulatory hormone concentrations in children with type 1 diabetes. Diabetes Care. 2006;29(1):2025. PubMed ID: 16373890 doi:10.2337/diacare.29.01.06.dc05-1192

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Valério G, Spagnuolo MI, Lombardi F, et al. Physical activity and sports participation in children and adolescents with type 1 diabetes mellitus. Nutr Metab Cardiovasc Dis. 2005;17(5):37682. doi:10.1016/j.numecd.2005.10.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Vasques DG, Silva KS, Lopes AS. Cardiorespiratory fitness of adolescents from Florianópolis, SC. Rev Bras Med Esporte. 2007;13(6):37680. doi:10.1590/S1517-86922007000600004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Viswanathan V. Prevention of microvascular complications in type 1 diabetes mellitus. Indian J Endocrinol Metab. 2015;19(1):3638.

  • 42.

    Wilmore JH, Costill DL, Kenney WL. Sport and Exercise Physiology. Barueri-SP: Manole; 2010:680.

  • 43.

    World Health Organization. European Health for All Database [online database]. Copenhagen: WHO Regional Office for Europe; 2007.

  • 44.

    World Health Organization. Global Recommendations on Physical Activity for Health.” Geneva: World Health Organization; 2010:pp. 810.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3504 1506 58
Full Text Views 40 7 0
PDF Downloads 52 13 0