Significant Energy Deficit and Suboptimal Sleep During a Junior Academy Tennis Training Camp

in Pediatric Exercise Science
View More View Less
  • 1 The University of Huddersfield
  • | 2 St Mary’s University
  • | 3 Culford School
  • | 4 Manchester Metropolitan University
Restricted access

Purpose: To assess the training load, energy expenditure, dietary intake, and sleep quality and quantity of junior tennis players during a tennis training camp. Methods: Ten junior academy tennis players (14 [1] y) completed a 6-day camp with daily morning and afternoon training. Players wore accelerometer watches to measure activity energy expenditure and sleep. Global positioning system units were worn to monitor external training load (distance covered, maximum velocity, and PlayerLoad). Dietary intake was obtained from a food diary and supplementary food photography. Results: Players covered significantly more distance and had higher PlayerLoad during morning sessions than afternoon sessions (5370 [505] m vs 4726 [697] m, P < .005, d = 3.2; 725 [109] a.u. vs 588 [96] a.u., P < .005, d = 4.0). Players also ran further (5624 [897] m vs 4933 [343] m, P < .05, d = 1.0) and reached higher maximum velocities (5.17 [0.44] m·s−1 vs 4.94 [0.39] m·s−1, P < .05, d = 0.3) during simulated match play compared with drill sessions. Mean daily energy expenditure was 3959 (630) kcal. Mean energy intake was 2526 (183) kcal, resulting in mean energy deficits of 1433 (683) kcal. Players obtained an average of 6.9 (0.8) hours of sleep and recorded 28 (7) nightly awakenings. Conclusions: Junior academy tennis players failed to achieve energy balance and recorded suboptimal sleep quantity and quality throughout the training camp.

Fleming, Corr, and Naughton are with the School of Human and Health Sciences, University of Huddersfield, Huddersfield, United Kingdom. Fleming is also with the Faculty of Sport, Allied Health and Performance Science, St Mary’s University, London, United Kingdom; and the Division of Sport, Exercise and Nutrition Sciences, University of Huddersfield, Huddersfield, United Kingdom. Earle is with the Culford School, Bury St Edmunds, United Kingdom. Harper is with the Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom.

Fleming (james.fleming@stmarys.ac.uk) is corresponding author.

Supplementary Materials

    • Supplementary Material (PDF 84 KB)
  • 1.

    Bélanger , Bernier A, Paquet J, Simard V, Carrier J. Validating actigraphy as a measure of sleep for preschool children. J Clin Sleep Med. 2013;9(7):7016. doi:10.5664/jcsm.2844

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Rodríguez G, Moreno LA, Sarría A, Fleta J, Bueno M. Resting energy expenditure in children and adolescents: agreement between calorimetry and prediction equations. Clinical Nutrition. 2002;21(3):255260. doi:10.1054/clnu.2001.0531

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Coelho GMO, de Farias MLF, de Mendonça LMC, et al. The prevalence of disordered eating and possible health consequences in adolescent female tennis players from Rio de Janeiro, Brazil. Appetite. 2013;64:3947. doi:10.1016/j.appet.2013.01.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Desbrow B, Burd NA, Tarnopolsky M, Moore DR, Elliott-Sale KJ. Nutrition for special populations: young, female, and masters athletes. Int J Sport Nutr Exerc Metab. 2019;29(2):2207. doi:10.1123/ijsnem.2018-0269

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Desbrow B, McCormack J, Burke LM, et al. Sports Dietitians Australia Position Statement: sports nutrition for the adolescent athlete. Int J Sport Nutr Exerc Metab. 2014;24(5):57084. doi:10.1123/ijsnem.2014-0031

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    de Vries SI, Bakker I, Hopman-Rock M, Hirasing RA, van Mechelen W. Clinimetric review of motion sensors in children and adolescents. J Clin Epidemiol. 2006;59(7):67080. doi:10.1016/j.jclinepi.2005.11.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Duffield R, Murphy A, Kellett A, Reid M. Recovery from repeated on-court tennis sessions: combining cold-water immersion, compression, and sleep recovery interventions. Int J Sports Physiol Perform. 2014;9(2):27382. doi:10.1123/ijspp.2012-0359

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Duffield R, Reid M, Baker J, Spratford W. Accuracy and reliability of GPS devices for measurement of movement patterns in confined spaces for court-based sports. J Sci Med Sport. 2010;13(5):5235. doi:10.1016/j.jsams.2009.07.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Fullagar HHK, Skorski S, Duffield R, Hammes D, Coutts AJ, Meyer T. Sleep and athletic performance: the effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. Sports Med. 2015;45(2):16186. doi:10.1007/s40279-014-0260-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Gao B, Dwivedi S, Milewski MD, Cruz AI. Chronic lack of sleep is associated with increased sports injury in adolescents: a systematic review and meta-analysis. Orthop J Sports Med. 2019;7(suppl 3). doi:10.1177/2325967119S00132

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Halson S. Nutrition, sleep and recovery. Eur J Sport Sci. 2008;8:11926. doi:10.1080/17461390801954794

  • 12.

    Hamlin MJ, Wilkes D, Elliot CA, Lizamore CA, Kathiravel Y. Monitoring training loads and perceived stress in young elite university athletes. Front Physiol. 2019;10:34. doi:10.3389/fphys.2019.00034

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Hannon MP, Close GL, Morton JP. Energy and macronutrient considerations for young athletes. Strength Cond J. 42(6):10919. doi:10.1519/SSC.0000000000000570

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Hirshkowitz M, Whiton K, Albert SM, et al. National Sleep Foundation’s sleep time duration recommendations: methodology and results summary. Sleep Health. 2015;1(1):403. doi:10.1016/j.sleh.2014.12.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Juzwiak CR, Amancio OMS, Vitalle MSS, Pinheiro MM, Szejnfeld VL. Body composition and nutritional profile of male adolescent tennis players. J Sports Sci. 2008;26(11):120917. doi:10.1080/02640410801930192

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Kölling S, Steinacker JM, Endler S, Ferrauti A, Meyer T, Kellmann M. The longer the better: sleep-wake patterns during preparation of the World Rowing Junior Championships. Chronobiol Int. 2016;33(1):7384. doi:10.3109/07420528.2015.1118384

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Lastella M, Roach GD, Vincent GE, Scanlan AT, Halson SL, Sargent C. The impact of training load on sleep during a 14-day training camp in elite, adolescent, female basketball players. Int J Sports Physiol Perform. 2020;15(5):72430. doi:10.1123/ijspp.2019-0157

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Malone SK. Early to bed, early to rise? An exploration of adolescent sleep hygiene practices. J Sch Nurs. 2011;27(5):34854. doi:10.1177/1059840511410434

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Martin JL, Hakim AD. Wrist actigraphy. Chest. 2011;139(6):15141527. doi:10.1378/chest.10-1872

  • 20.

    Matos NF, Winsley RJ, Williams CA. Prevalence of nonfunctional overreaching/overtraining in young English athletes. Med Sci Sports Exerc. 2011;43(7):128794. doi:10.1249/MSS.0b013e318207f87b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Mountjoy M, Armstrong N, Bizzini L, et al. IOC consensus statement: “training the elite child athlete.” Br J Sports Med. 2008;42(3):1634. doi:10.1136/bjsm.2007.044016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Mountjoy M, Sundgot-Borgen J, Burke L, et al. The IOC consensus statement: beyond the Female Athlete Triad–Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2014;48(7):4917. doi:10.1136/bjsports-2014-093502

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Nicolella DP, Torres-Ronda L, Saylor KJ, Schelling X. Validity and reliability of an accelerometer-based player tracking device. PLoS One. 2018;13(2):e0191823. doi:10.1371/journal.pone.0191823

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Nugent FJ, Comyns TM, Warrington GD. Effects of increased training volume during a ten-day training camp on competitive performance in national level youth swimmers. J Sports Med Phys Fitness. 2018;58(12):172834. doi:10.23736/S0022-4707.17.07838-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Paruthi S, Brooks LJ, D’Ambrosio C, et al. Recommended amount of sleep for pediatric populations: a consensus statement of the American Academy of Sleep Medicine. J Clin Sleep Med. 2016;12(6):7856. doi:10.5664/jcsm.5866

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Pitchford NW, Robertson SJ, Sargent C, Cordy J, Bishop DJ, Bartlett JD. Sleep quality but not quantity altered with a change in training environment in elite Australian rules football players. Int J Sports Physiol Perform. 2016;12(1):7580. doi:10.1123/ijspp.2016-0009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Reed DL, Sacco WP. Measuring sleep efficiency: what should the denominator be? J Clin Sleep Med. 2021;12(2):4.

  • 28.

    Reid MM, Duffield R, Minett GM, Sibte N, Murphy AP, Baker J. Physiological, perceptual, and technical responses to on-court tennis training on hard and clay courts. J Strength Cond Res. 2013;27(6):148795. doi:10.1519/JSC.0b013e31826caedf

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Rodríguez G, Moreno LA, Sarría A, Fleta J, Bueno M. Resting energy expenditure in children and adolescents: agreement between calorimetry and prediction equations. Clinical nutrition (Edinburgh, Scotland). 2002;21(3):255260. doi:10.1054/clnu.2001.0531

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Sadeh A, Sharkey M, Carskadon MA. Activity-based sleep-wake identification: an empirical test of methodological issues. Sleep. 1994;17(3):2017. doi:10.1093/sleep/17.3.201

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Sawyer SM, Afifi RA, Bearinger LH, et al. Adolescence: a foundation for future health. Lancet. 2012;379(9826):163040. doi:10.1016/S0140-6736(12)60072-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Schofield C. An annotated bibliography of source material for basal metabolic rate data. Hum Nutr Clin Nutr. 1985;39(suppl 1):4291.

  • 33.

    Simpson NS, Gibbs EL, Matheson GO. Optimizing sleep to maximize performance: implications and recommendations for elite athletes. Scand J Med Sci Sports. 2017;27(3):26674. doi:10.1111/sms.12703

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Thomas DT, Erdman KA, Burke LM. American College of Sports Medicine Joint Position Statement. Nutrition and athletic performance. Med Sci Sports Exerc. 2016;48(3):54368. doi:10.1249/MSS.0000000000000852

    • Search Google Scholar
    • Export Citation
  • 35.

    Westerterp KR. Diet induced thermogenesis. Nutr Metab. 2004;1:5. doi:10.1186/1743-7075-1-5

  • 36.

    Yli-Piipari S. Energy expenditure and dietary intake of female collegiate tennis and soccer players during a competitive season. Kinesiology. 2019;51(1):707.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 719 719 229
Full Text Views 7 7 1
PDF Downloads 12 12 2