Physical Activity Levels and Adiposity in Ambulant Children and Adolescents With Cerebral Palsy Compared With Their Typically Developing Peers

Click name to view affiliation

Leticia Janzen Sport Injury Prevention Research Center, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
Vi Riddell Pediatric Rehabilitation Research Program, Alberta Children’s Hospital Research Institute, Calgary, AB, Canada

Search for other papers by Leticia Janzen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8582-5209
,
Clodagh M. Toomey Sport Injury Prevention Research Center, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
School of Allied Health, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland

Search for other papers by Clodagh M. Toomey in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9373-100X
,
Laura K. Brunton School of Physical Therapy, Western University, London, ON, Canada

Search for other papers by Laura K. Brunton in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0890-7040
,
Elizabeth G. Condliffe Vi Riddell Pediatric Rehabilitation Research Program, Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
Departments of Clinical Neurosciences and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada

Search for other papers by Elizabeth G. Condliffe in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0178-616X
,
Shane Esau Sport Injury Prevention Research Center, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
Vi Riddell Pediatric Rehabilitation Research Program, Alberta Children’s Hospital Research Institute, Calgary, AB, Canada

Search for other papers by Shane Esau in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5614-1011
,
Adam Kirton Vi Riddell Pediatric Rehabilitation Research Program, Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
Departments of Clinical Neurosciences and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada

Search for other papers by Adam Kirton in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5209-3374
,
Carolyn A. Emery Sport Injury Prevention Research Center, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
Vi Riddell Pediatric Rehabilitation Research Program, Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
Pediatrics and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada

Search for other papers by Carolyn A. Emery in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9499-6691
, and
Gregor Kuntze Sport Injury Prevention Research Center, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
Vi Riddell Pediatric Rehabilitation Research Program, Alberta Children’s Hospital Research Institute, Calgary, AB, Canada

Search for other papers by Gregor Kuntze in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6674-7981 *
Restricted access

Purpose: This study assessed physical activity (PA) and body composition of ambulatory children and adolescents with cerebral palsy (CP) and their typically developing peers. Methods: Participants included youth with CP (ages 8–18 y and Gross Motor Function Classification System [GMFCS] levels I–III) and their typically developing peers. Outcomes included PA (actigraphy) and fat/lean mass index (FMI/LMI; dual-energy X-ray absorptiometry). Statistical analyses included linear mixed effects models with Bonferroni adjustment. Fixed effects were study group (CP and typically developing); random effects were participant clusters (sex and age). Exploratory analyses included association of body composition and PA, GMFCS level, and CP involvement (unilateral and bilateral). Results: Seventy-eight participants (CP: n = 40, girls: n = 29; GMFCS I: n = 20; GMFCS II: n = 14; GMFCS III: n = 6) met inclusion criteria. Individuals with CP had lower moderate to vigorous PA (MVPA; β = −12.5; 98.3% confidence interval, −22.6 to −2.5 min; P = .004) and lower LMI (β = −1.1; 97.5% confidence interval, −2.1 to −0.0 kg/m2; P = .020). Exploratory analyses indicated increased LMI with greater MVPA (P = .001), reduced MVPA for GMFCS II (P = .005) and III (P = .001), increased sedentary time for GMFCS III (P = .006), and greater fat mass index with unilateral motor impairment (P = .026). Conclusions: The findings contribute to the knowledge base of increasing MVPA and LMI deficits with the greater functional impact of CP. Associations of increasing LMI with greater MVPA support efforts targeting enhanced PA participation to promote independent mobility.

  • Collapse
  • Expand
  • 1.

    Bjornson K, Fiss A, Avery L, et al. Longitudinal trajectories of physical activity and walking performance by gross motor function classification system level for children with cerebral palsy. Disabil Rehabil. 2020;42(12):170513. PubMed ID: 30616403 doi:10.1080/09638288.2018.1534995

    • Search Google Scholar
    • Export Citation
  • 2.

    Bolker B. Linear mixed-effects models using “Eigen” and S4. R Core Team. 2021.

  • 3.

    Brunton LK, Bartlett DJ. Description of exercise participation of adolescents with cerebral palsy across a 4-year period. Pediatr Phys Ther. 2010;22(2):1807. PubMed ID: 20473101 doi:10.1097/PEP.0b013e3181db8aaa

    • Search Google Scholar
    • Export Citation
  • 4.

    Capio CM, Sit CH, Abernethy B. Physical activity measurement using MTI (Actigraph) among children with cerebral palsy. Arch Phys Med Rehabil. 2010;91:128390. doi:10.1016/j.apmr.2010.04.026

    • Search Google Scholar
    • Export Citation
  • 5.

    Carlon SL, Taylor NF, Dodd KJ, Shields N. Differences in habitual physical activity levels of young people with cerebral palsy and their typically developing peers: a systematic review. Disabil Rehabil. 2013;35(8):64755. PubMed ID: 23072296 doi:10.3109/09638288.2012.715721

    • Search Google Scholar
    • Export Citation
  • 6.

    Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011;43(2):35764. PubMed ID: 20581716 doi:10.1249/MSS.0b013e3181ed61a3

    • Search Google Scholar
    • Export Citation
  • 7.

    Ekelund U, Luan J, Sherar LB, et al. Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA. 2012;307(7):704. PubMed ID: 22337681 doi:10.1001/jama.2012.156

    • Search Google Scholar
    • Export Citation
  • 8.

    Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):155765. PubMed ID: 18949660 doi:10.1080/02640410802334196

    • Search Google Scholar
    • Export Citation
  • 9.

    Finbråten AK, Martins C, Andersen GL, et al. Assessment of body composition in children with cerebral palsy: a cross-sectional study in Norway. Dev Med Child Neurol. 2015;57(9):85864. PubMed ID: 25827868 doi:10.1111/dmcn.12752

    • Search Google Scholar
    • Export Citation
  • 10.

    Füzéki E, Engeroff T, Banzer W. Health benefits of light-intensity physical activity: a systematic review of accelerometer data of the national health and nutrition examination survey (NHANES). Sports Med. 2017;47(9):176993. PubMed ID: 28393328 doi:10.1007/s40279-017-0724-0

    • Search Google Scholar
    • Export Citation
  • 11.

    Ganz F, Hammam N, Pritchard L. Sedentary behavior and children with physical disabilities: a scoping review. Disabil Rehabil. 2021;43(20):296375. PubMed ID: 32116041 doi:10.1080/09638288.2020.1723720

    • Search Google Scholar
    • Export Citation
  • 12.

    Gorter JW, Noorduyn SG, Obeid J, Timmons BW. Accelerometry: a feasible method to quantify physical activity in ambulatory and nonambulatory adolescents with cerebral palsy. Int J Pediatr. 2012;2012:16. doi:10.1155/2012/329284

    • Search Google Scholar
    • Export Citation
  • 13.

    Hangartner TN, Warner S, Braillon P, Jankowski L, Shepherd J. The official positions of the international society for clinical densitometry: acquisition of dual-energy X-ray absorptiometry body composition and considerations regarding analysis and repeatability of measures. J Clin Densitom. 2013;16(4):52036. PubMed ID: 24183641 doi:10.1016/j.jocd.2013.08.007

    • Search Google Scholar
    • Export Citation
  • 14.

    Keawutan P, Bell K, Davies PSW, Boyd RN. Systematic review of the relationship between habitual physical activity and motor capacity in children with cerebral palsy. Res Dev Disabil. 2014;35(6):13019. PubMed ID: 24694659 doi:10.1016/j.ridd.2014.03.028

    • Search Google Scholar
    • Export Citation
  • 15.

    Mitchell LE, Ziviani J, Boyd RN. Characteristics associated with physical activity among independently ambulant children and adolescents with unilateral cerebral palsy. Dev Med Child Neurol. 2015;57(2):16774. PubMed ID: 25146888 doi:10.1111/dmcn.12560

    • Search Google Scholar
    • Export Citation
  • 16.

    Mitchell LE, Ziviani J, Boyd RN. Habitual physical activity of independently ambulant children and adolescents with cerebral palsy: are they doing enough? Phys Ther. 2015;95(2):20211. PubMed ID: 25278338 doi:10.2522/ptj.20140031

    • Search Google Scholar
    • Export Citation
  • 17.

    O’Neil ME, Fragala-Pinkham M, Lennon N, George A, Forman J, Trost SG. Reliability and validity of objective measures of physical activity in youth with cerebral palsy who are ambulatory. Phys Ther. 2016;96(1):3745. PubMed ID: 26089043

    • Search Google Scholar
    • Export Citation
  • 18.

    Pascoe J, Thomason P, Graham HK, Reddihough D, Sabin MA. Body mass index in ambulatory children with cerebral palsy: a cohort study. J Paediatr Child Health. 2016;52(4):41721. PubMed ID: 27145505 doi:10.1111/jpc.13097

    • Search Google Scholar
    • Export Citation
  • 19.

    Pinto VV, Alves LAC, Mendes FM, Ciamponi AL. The nutritional state of children and adolescents with cerebral palsy is associated with oral motor dysfunction and social conditions: a cross sectional study. BMC Neurol. 2016;16(1):17. doi:10.1186/s12883-016-0573-8

    • Search Google Scholar
    • Export Citation
  • 20.

    Qiu S, Cai X, Jia L, et al. Does objectively measured light-intensity physical activity reduce the risk of cardiovascular mortality? A meta-analysis. Eur Hear J Qual Care Clin Outcomes. 2021;7(5):496504. doi:10.1093/ehjqcco/qcaa051

    • Search Google Scholar
    • Export Citation
  • 21.

    Rogozinski BM, Davids JR, Davis RB, et al. Prevalence of obesity in ambulatory children with cerebral palsy. J Bone Jt Surg Ser A. 2007;89(11):24216. doi:10.2106/00004623-200711000-00012

    • Search Google Scholar
    • Export Citation
  • 22.

    Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:814. PubMed ID: 17370477

    • Search Google Scholar
    • Export Citation
  • 23.

    Ryan JM, Forde C, Hussey JM, Gormley J. Comparison of patterns of physical activity and sedentary behavior between children with cerebral palsy and children with typical development. Phys Ther. 2015;95(12):160916. doi:10.2522/ptj.20140337

    • Search Google Scholar
    • Export Citation
  • 24.

    Sopher AB, Thornton JC, Wang J, Pierson RN, Heymsfield SB, Horlick M. Measurement of percentage of body fat in 411 children and adolescents: a comparison of dual-energy X-ray absorptiometry with a four-compartment model. Pediatrics. 2004;113(5I):128590. doi:10.1542/peds.113.5.1285

    • Search Google Scholar
    • Export Citation
  • 25.

    Taylor NF. Sedentary behaviour in adolescents and young adults with cerebral palsy. Dev Med Child Neurol. 2014;56(7):60910. PubMed ID: 24645741 doi:10.1111/dmcn.12424

    • Search Google Scholar
    • Export Citation
  • 26.

    Telama R, Yang X, Viikari J, Valimaki I, Wanner O, Raitakari O. Physical activity from childhood to adulthood. Am J Prev Med. 2005;28(3):26773. PubMed ID: 15766614 doi:10.1016/j.amepre.2004.12.003

    • Search Google Scholar
    • Export Citation
  • 27.

    Tremblay MS, Carson V, Chaput JP, et al. Canadian 24-hour movement guidelines for children and youth: an integration of physical activity, sedentary behaviour, and sleep. Appl Physiol Nutr Metab. 2016;41 (6) Suppl 3:S31127. doi:10.1139/apnm-2016-0151

    • Search Google Scholar
    • Export Citation
  • 28.

    Verschuren O, Peterson MD, Balemans ACJ, Hurvitz EA. Exercise and physical activity recommendations for people with cerebral palsy. Dev Med Child Neurol. 2016;58(8):798808. PubMed ID: 26853808 doi:10.1111/dmcn.13053

    • Search Google Scholar
    • Export Citation
  • 29.

    Whitney DG, Gross‐Richmond P, Hurvitz EA, Peterson MD. Total and regional body fat status among children and young people with cerebral palsy: a scoping review. Clin Obes. 2019;9(5):e12327. PubMed ID: 31237080 doi:10.1111/cob.12327

    • Search Google Scholar
    • Export Citation
  • 30.

    Whitney DG, Kamdar NS, Ng S, Hurvitz EA, Peterson MD. Prevalence of high-burden medical conditions and health care resource utilization and costs among adults with cerebral palsy. Clin Epidemiol. 2019;11:46981. PubMed ID: 31417318 doi:10.2147/CLEP.S205839

    • Search Google Scholar
    • Export Citation
  • 31.

    Więch P, Ćwirlej-Sozańska A, Wiśniowska-Szurlej A, et al. The relationship between body composition and muscle tone in children with cerebral palsy: a case-control study. Nutrients. 2020;12(3):864. PubMed ID: 32213841 doi:10.3390/nu12030864

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1129 729 40
Full Text Views 94 84 1
PDF Downloads 71 53 1