Salivary and Serum Concentrations of Cortisol and Testosterone at Rest and in Response to Intense Exercise in Boys Versus Men

in Pediatric Exercise Science
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $68.00

1 year subscription

USD  $90.00

Student 2 year subscription

USD  $129.00

2 year subscription

USD  $168.00

This study compared salivary and serum concentrations of testosterone and cortisol at rest and in response to intense multitask exercise in boys and men. Early morning saliva and venous blood samples were obtained before and 15 minutes after exercise from 30 competitive swimmers (15 boys, age 14.3 [1.9] y; 15 men, age 21.7 [3.1] y). Exercise included a swim-bench maximal strength task and an all-out 200-m swim, followed by a high-intensity interval swimming protocol (5 × 100 m, 5 × 50 m, and 5 × 25 m). At baseline, fasting testosterone (but not cortisol) concentration was higher in men than boys in serum and saliva (P < .05). Salivary and serum cortisol increased postexercise, with a greater increase in men compared with boys (men: 226% and 242%; boys: 78% and 64%, respectively; group by time interaction, P < .05). Testosterone was reduced postexercise in serum but not in saliva (men: −14.7% and 0.1%; boys: −33.9% and −4.5%, respectively, fluid by time interaction, P < .01). Serum and salivary cortisol (but not testosterone), preexercise and postexercise values were strongly correlated in both men and boys (r = .79 and .82, respectively; P < .01). In summary, early morning high-intensity exercise results in a decrease in testosterone in serum, but not saliva, and an increase in cortisol irrespective of the fluid used, in both boys and men. When examining immediate postexercise changes, the lack of correlation in testosterone between saliva and serum suggests that saliva may not be an appropriate fluid to examine changes in testosterone. The high correlation observed between serum and saliva for cortisol indicates that, in both boys and men, saliva may be used to monitor the immediate cortisol response to exercise.

Adebero, McKinlay, Theocharidis, Root, Klentrou, and Falk are with the Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St Catharines, ON, Canada. Josse is with the School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada.

Falk (bfalk@brocku.ca) is corresponding author.
  • 1.

    Angeli A, Minetto M, Dovio A, Paccotti P. The overtraining syndrome in athletes: a stress-related disorder. J Endocrinol Invest. 2004;27(6):603–12. PubMed ID: 15717662 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Bunt JC. Hormonal alterations due to exercise. Sports Med. 1986;3(5):331–45. PubMed ID: 3529282 doi:

  • 3.

    Cadore E, Lhullier F, Brentano M, et al. Correlations between serum and salivary hormonal concentrations in response to resistance exercise. J Sports Sci. 2008;26(10):1067–72. PubMed ID: 18608830 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Crewther B, Keogh J, Cronin J, Cook C. Possible stimuli for strength and power adaptation: acute hormonal responses. Sports Med. 2006;36(3):215–38. PubMed ID: 16526834 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Crewther BT, Lowe TE, Ingram J, Weatherby RP. Validating the salivary testosterone and cortisol concentration measures in response to short high-intensity exercise. J Sports Med Phys Fitness 2010;50(1):85–92. PubMed ID: 20308978

    • Search Google Scholar
    • Export Citation
  • 6.

    Crewther BT, Obminski Z, Orysiak J, Al-Dujaili EAS. The utility of salivary testosterone and cortisol concentration measures for assessing the stress responses of junior athletes during a sporting competition. J Clin Lab Anal. 2018;32(1):e22197. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    del Corral P, Mahon AD, Duncan GE, Howe CA, Craig BW. The effect of exercise on serum and salivary cortisol in male children. Med Sci Sports Exerc. 1994;26(11):1297–1301. PubMed ID: 7837948

    • Search Google Scholar
    • Export Citation
  • 8.

    Deli CK, Fatouros IG, Paschalis V, et al. A comparison of exercise-induced muscle damage following maximal eccentric contractions in men and boys. Pediatr Exerc Sci 2017;29(3):316–25. PubMed ID: 28165870 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Engel F, Hartel S, Wagner MO, Strahler J, Bos K, Sperlich B. Hormonal, metabolic, and cardiorespiratory responses of young and adult athletes to a single session of high-intensity cycle exercise. Pediatr Exerc Sci 2014;26(4):485–94. PubMed ID: 25050695 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Falk B, Dotan R. Child-adult differences in the recovery from high-intensity exercise. Exerc Sport Sci Rev. 2006;34(3):107–12. PubMed ID: 16829737 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Falk B, Eliakim A. Endocrine response to resistance training in children. Pediatr Exerc Sci 2014;26(4):404–22. PubMed ID: 25372375 doi:

  • 12.

    Fry AC, Kraemer WJ, Stone MH, et al. Endocrine and performance responses to high volume training and amino acid supplementation in elite junior weightlifters. Int J Sport Nutr. 1993;3(3):306–22. PubMed ID: 8220396 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Fry AC, Lohnes CA. Acute testosterone and cortisol responses to high power resistance exercise. Fiziol Cheloveka. 2010;36(4):102–6. PubMed ID: 20803956

    • Search Google Scholar
    • Export Citation
  • 14.

    Fryer SM, Dickson T, Hillier S, Stoner L, Scarrott C, Draper N. A comparison of capillary, venous, and salivary cortisol sampling after intense exercise. Int J Sports Physiol Perform. 2014;9(6):973–7. PubMed ID: 24622735 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Gall H, Glowania HJ, Fischer M. Circadian rhythm of plasm testosterone levels. II. Testosterone levels during the 1st and 2d half-day. Andrologia. 1979;11(5):379–84. PubMed ID: 517773 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Gozansky WS, Lynn JS, Laudenslager ML, Kohrt WM. Salivary cortisol determined by enzyme immunoassay is preferable to serum total cortisol for assessment of dynamic hypothalamic–pituitary–adrenal axis activity. Clin Endocrinol. 2005;63(3):336–41. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Heavens KR, Szivak TK, Hooper DR, et al. The effects of high intensity short rest resistance exercise on muscle damage markers in men and women. J Strength Cond Res. 2014;28(4):1041–9. PubMed ID: 24662155 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Hoffman JR, Ratamess NA, Kang J, Falvo MJ, Faigenbaum AD. Effects of protein supplementation on muscular performance and resting hormonal changes in college football players. J Sports Sci Med. 2007;6(1):85–92. PubMed ID: 24149229

    • Search Google Scholar
    • Export Citation
  • 19.

    Hoffman JR, Ratamess NA, Tranchina CP, Rashti SL, Kang J, Faigenbaum AD. Effect of a proprietary protein supplement on recovery indices following resistance exercise in strength/power athletes. Amino Acids. 2010;38(3):771–8. PubMed ID: 19347247 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Hough JP, Papacosta E, Wraith E, Gleeson M. Plasma and salivary steroid hormone responses of men to high-intensity cycling and resistance exercise. J Strength Cond Res. 2011;25(1):23–31. PubMed ID: 21157386 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Klentrou P, Giannopoulou A, McKinlay BJ, Wallace P, Muir C, Falk B, Mack D. Salivary cortisol and testosterone responses to resistance and plyometric exercise in 12- to 14-year-old boys. Appl Physiol Nutr Metab. 2016;41(7):714–8. PubMed ID: 27176936 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Koch AJ, Pereira R, Machado M. The creatine kinase response to resistance exercise. J Musculoskelet Neuronal Interact. 2014;14(1):68–77. PubMed ID: 24583542

    • Search Google Scholar
    • Export Citation
  • 23.

    Kraemer WJ, Ratamess NA, Nindl BC. Recovery responses of testosterone, growth hormone, and IGF-1 after resistance exercise. J Appl Physiol. 2017;122(3):549–58. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Lane AR, Hackney AC. Relationship between salivary and serum testosterone levels in response to different exercise intensities. Hormones. 2015;14(2):258–64.

    • Search Google Scholar
    • Export Citation
  • 25.

    Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):689–94. PubMed ID: 11932580

    • Search Google Scholar
    • Export Citation
  • 26.

    O’Connor PJ, Corrigan DL. Influence of short-term cycling on salivary cortisol levels. Med Sci Sports Exerc. 1987;19(3):224–8.

  • 27.

    Paccotti P, Minetto M, Terzolo M, et al. Effects of high-intensity isokinetic exercise on salivary cortisol in athletes with different training schedules: relationships to serum cortisol and lactate. Int J Sports Med. 2005;26(9):747–55. PubMed ID: 16237620 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Pal S, Chaki B, Chattopadhyay S, Bandyopadhyay A. High-intensity exercise induced oxidative stress and skeletal muscle damage in postpubertal boys and girls: a comparative study. J Strength Cond Res. 2018;32(4):1045–52. PubMed ID: 28767482 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Port K. Serum and saliva cortisol responses and blood lactate accumulation during incremental exercise testing. Int J Sports Med. 1991;12(5):490–4. PubMed ID: 1752718 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Pullinen T, Mero A, Huttunen P, Pakarinen A, Komi PV. Resistance exercise-induced hormonal response under the influence of delayed onset muscle soreness in men and boys. Scand J Med Sci Sports. 2011;21(6):e184–94. PubMed ID: 21039902 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Raastad T, Bjoro T, Hallen J. Hormonal responses to high- and moderate-intensity strength exercise. Eur J Appl Physiol. 2000;82(1–2):121–8. PubMed ID: 10879453 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Rotstein A, Falk B, Einbinder M, Zigel L. Changes in plasma volume following intense intermittent exercise in neutral and hot environmental conditions. J Sports Med Phys Fitness. 1998;38(1):24–9. PubMed ID: 9638028

    • Search Google Scholar
    • Export Citation
  • 33.

    Rubin D, Castner D, Pham H, Ng J, Adams E, Judelson D. Hormonal and metabolic responses to a resistance exercise protocol in lean children, obese children and lean adults. Pediatr Exerc Sci. 2014;26(4):444–54. PubMed ID: 25372379 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Strumia MM, Sample AB, Hart ED. An improved micro hematocrit method. Am J Clin Pathol. 1954;24(9):1016–24. PubMed ID: 13197333 doi:

  • 35.

    Tanner AV, Nielsen BV, Allgrove J. Salivary and plasma cortisol and testosterone responses to interval and tempo runs and a bodyweight-only circuit session in endurance-trained men. J Sports Sci. 2014;32(7):680–9. PubMed ID: 24279436 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Van Beaumont W. Evaluation of hemoconcentration from hematocrit measurements. J Appl Physiol. 1972;32(5):712–3. PubMed ID: 5038863 doi:

  • 37.

    Zinner C, Wahl P, Achtzehn S, Reed JL, Mester J. Acute hormonal responses before and after 2 weeks of HIT in well trained junior triathletes. Int J Sports Med. 2014;35(4):316–22. PubMed ID: 24081622

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1084 1084 84
Full Text Views 26 26 5
PDF Downloads 12 12 6