What is the Minimum Step Rate Required to Achieve Moderate-Intensity Walking Overground in Adolescent Girls?

in Pediatric Exercise Science
View More View Less
  • 1 Edge Hill University
  • 2 University of Edinburgh
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $69.00

1 year online subscription

USD  $92.00

Student 2 year online subscription

USD  $131.00

2 year online subscription

USD  $175.00

Background: In order to promote walking, researchers have sought to identify the required step rate to maintain a health-enhancing walking intensity However, there is limited evidence regarding the stepping rate required to promote moderate-intensity walking in adolescent girls. Purpose: To identify the step rate equivalent to moderate-intensity physical activity (MPA) in adolescent girls and to explore the influence that different anthropometric measures may have on the step rate equating to MPA in this population. Methods: A total of 56 adolescent girls (mean age = 13.8[0.7] y) were recruited to the study. Anthropometric variables and resting metabolic rate were assessed, followed by 3 overground walking trials on a flat surface at approximately 2, 3, and 4 mph, each lasting a minimum of 4 minutes. Oxygen uptake was assessed using a portable gas analyzer and subsequently converted into metabolic equivalents (METs). Step count was assessed by real-time direct observation hand tally. Results: Employing the linear regression between step rate and METs (r2 = .20, standard error of estimates = 0.003) suggests that 120 steps per minute was representative of an MPA (3 METs) equating to 7200 steps in 60 minutes. Multiple regression and mixed-model regression confirmed weight-related variables and maturity were significant predictors of METs (P < .01). Conclusion: The results suggest that, at population level, a step rate of 120 steps per minute may be advocated to achieve MPA in adolescent girls; although, due to the small sample size used, caution should be applied. At an individual level, other factors, such as age and weight, should be considered.

MacDonald is with the Department of Sport and Physical Activity, Edge Hill University, Ormskirk, United Kingdom. Fawkner and Niven are with the Physical Activity for Health Research Centre, Institute of Sport, Physical Education and Health Sciences, Moray House School of Education, University of Edinburgh, Edinburgh, Scotland, United Kingdom.

MacDonald (Mhairi.MacDonald@edgehill.ac.uk) is the corresponding author.
  • 1.

    Abel M, Hannon J, Mullineaux D, Beighle A. Determination of step rate thresholds corresponding to physical activity intensity classifications in adults. J Phys Act Health. 2011;8(1):4551. PubMed ID: 21297184 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32(9 suppl):S498S516. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Almarwani M, Van Swearingen JM, Perera S, Sparto PJ, Brach JS, The effect of auditory cueing on the spatial and temporal gait coordination in healthy adults. J Motor Behav. 2019;51(1):2531 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Armstrong N, Bray S. Physical activity patterns defined by continuous heart rate monitoring. Arch Dis Child. 1991;66(2):24547. PubMed ID: 2001112 doi:

  • 5.

    Beets MW, Agiovlasitis S, Fahs CA, Ranadive SM, Fernhall B. Adjusting step count recommendations for anthropometric variations in leg length. J Sci Med Sport. 2010;13(5):50912. PubMed ID: 20096631 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Blackwell E, de Leon CF, Miller GE. Applying mixed regression models to the analysis of repeated-measures data in psychosomatic medicine. Psychosom Med. 2006;68(6):8708. PubMed ID: 17079709 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Breusch TS, Pagan AR. A simple test for heteroskedasticity and random coefficient variation. Econometrica. 47(5), 128794.

  • 8.

    Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320(7244):12403. PubMed ID: 10797032 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Cole TJ, Freeman JV, Peerce MA. Body mass index reference curves for the UK, 1990. Arch Diss Child. 1995;73:259 doi:.

  • 10.

    Cook RD, Weisberg S. Residuals and Influence in Regression. New York, NY: Chapman and Hall; 1982.

  • 11.

    Dal U, Erdogan T, Resitoglu B, Beydagi H. Determination of preferred walking speed on treadmill may lead to high oxygen cost on treadmill walking. Gait Posture. 2010;31(3):3669. PubMed ID: 20129785 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    The World Health Organisation, de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Geneva, Switzerland. 2007: 660-7. Available from https://www.who.int/growthref/growthref_who_bull.pdf

    • Search Google Scholar
    • Export Citation
  • 13.

    Department of Health. UK Chief Medical Officers’ Physical Activity Guidelines [online]. London, UK: Department of Health and Social Care. UK Gov 2019. Available from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/832868/uk-chief-medical-officers-physical-activity-guidelines.pdf. Accessed January 2020.

    • Export Citation
  • 14.

    Graser SV, Groves A, Prusak KA, Pennington TR. Pedometer steps-per-minute, moderate intensity, and individual differences in 12- to 14-year-old youth. J Phys Act Health. 2011;8(2):2728. PubMed ID: 21415454 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Graser SV, Pangrazi RP, Vincent WJ. Step it up: activity intensity using pedometers. JOPERD. 2009;80(1):224.

  • 16.

    Harrell JS, McMurray RG, Baggett CD, Pennell ML, Pearce PF, Bangdiwala SI. Energy costs of physical activities in children and adolescents. Med Sci Sports Exerc. 2005;37(2):32936. PubMed ID: 15692331 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Harrington DM, Dowd KP, Tudor-Locke C, Donnelly AE. A steps/minute value for moderate intensity physical activity in adolescent females. Pediatr Exerc Sci. 2012;24(3):399408. PubMed ID: 22971556 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Jago R, Watson K, Baranowski T, et al. Pedometer reliability, validity and daily activity targets among 10- to 15-year-old boys. J Sports Sci. 2006;24(3):24151. PubMed ID: 16368634 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Koenker R. A note on standardizing a test of heteroskedasticity. J Econ. 1981;17(1), 10712 doi:

  • 20.

    Lee IM, Buchner DM. The importance of walking to public health. Med Sci Sports Exerc 2008;40(7 suppl):S5128. doi:

  • 21.

    Lubans DR, Morgan PJ, Collins CE, Boreham CA, Callister R. The relationship between heart rate intensity and pedometer step counts in adolescents. J Sports Sci 2009;27(6):5917. PubMed ID: 19308872 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    MacDonald MJ, Fawkner SG, Niven AG, Rowe D. Real world, real people: can we assess walking on a treadmill to establish step count recommendations in adolescents. Pediatr Exerc Sci. 2019;31(4):48494. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Malatesta D, Simar D, Dauvilliers Y, et al. Aerobic determinants of the decline in preferred walking speed in healthy, active 65- and 80-year-olds. Pflugers Arch. 2004;447(6):91521. PubMed ID: 14666424 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Marshall SJ, Levy SS, Tudor-Locke C, et al. Translating physical activity recommendations into a pedometer-based step goal: 3000 steps in 30 minutes. Am J Prev Med. 2009;36(5):4105. PubMed ID: 19362695 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Mian OS, Thom JM, Ardigò LP, Morse CI, Narici MV, Minetti AE. Effect of a 12-month physical conditioning programme on the metabolic cost of walking in healthy older adults. Eur J Appl Physiol. 2007;100(5):499505. PubMed ID: 16463043 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):68994. PubMed ID: 11932580

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Molnar D, Schutz Y. The effect of obesity, age puberty and gender on resting metabolic rate in children and adolescents. Eur J Pediatr. 1997;156(5):37681. PubMed ID: 9177980

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Morgan CF, Tsuchida AR, Beets MW, Hetzler RK, Stickley CD. Step-rate recommendations for moderate-intensity walking in overweight/obese and healthy weight children. J Phys Act Health. 2015;12(3):3705. PubMed ID: 24829045 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Ogilvie D, Foster CE, Rothnie H, et al. Scottish physical activity research collaboration. Interventions to promote walking: systematic review. BMJ. 2007;334(7605):1204. PubMed ID: 17540909 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Roemmich JN, Clark PA, Walter K, Patrie J, Weltman A, Rogol AD, Pubertal alterations in growth and body composition. V. Energy expenditure, adiposity, and fat distribution. Am J Physiol Endocrinol Metab. 2000;279(6):E142636. PubMed ID: 11093932 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Rowe DA, Welk GJ, Heil DP, et al. Stride rate recommendations for moderate intensity walking. Med Sci Sports Exerc. 2011;43(2):3128. PubMed ID: 20543754 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Rowland TW. Children Exercise Physiology. 2nd ed. Champaign, IL: Human Kinetics: BayState Medical Centre; 2005.

  • 33.

    Spadano JL, Must A, Bandini LG, Dallal GE, Dietz WH. Energy cost of physical activities in 12-y-old girls: MET values and the influence of body weight. Int J Obes Relat Metab Disord 2003;27(12):152833. PubMed ID: 14634685 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Stewart A, Marfell-Jones M, Olds T, DeRidder H. International Standards for Athropometric Assessment. Lower Hutt, New Zealand: International Society for the Advancement of Kinathropometry; 2011.

    • Search Google Scholar
    • Export Citation
  • 35.

    Treuth MS, Schmitz K, Catellier DJ, et al. Defining accelerometer thresholds for activity intensities in adolescent girls. Med Sci Sports Exerc. 2004;36(7):125966. PubMed ID: 15235335

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Tudor-Locke C, Craig CL, Beets MW, et al. How many steps/day are enough? For children and adolescents. Int J Behav Nutr Phys Act. 2011;8(1):78. doi:

  • 37.

    Tudor-Locke C, Schuna Jr JM, Han H, et al. Cadence (step/min) and intensity during ambulation in 6–20 year olds: the CADENCE-kids study. Int J Behav Nutr Phys Act. 2018;15(1):20. PubMed ID: 29482554 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Tudor-Locke C, Sisson SB, Collova T, Lee SM, Swan PD. Pedometer-determined step count guidelines for classifying walking intensity in a young ostensibly healthy population. Can J Appl Physiol. 2005;30(6):66676. PubMed ID: 16485518 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    VanSwearingen JM, Perera S, Brach JS, Cham R, Rosano C, Studenski SA. A randomized trial of two forms of therapeutic activity to improve walking: effect on the energy cost of walking. J Gerontol A Biol Sci Med Sci. 2009;64(11):11908. PubMed ID: 19643842 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949;109(1–2):19. PubMed ID: 15394301 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Welk GJ. Principles of design and analyses for the calibration of accelerometry-based activity monitors. Med Sci Sports Exerc. 2005;37(11 suppl):S50111. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 101 101 101
Full Text Views 1 1 1
PDF Downloads 0 0 0