Effects of 2 Methods of Combined Training on Cardiometabolic Risk Factors in Adolescents: A Randomized Controlled Trial

in Pediatric Exercise Science
View More View Less
  • 1 State University of Northern Paraná
  • 2 State University of Londrina
  • 3 University of Newcastle
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $69.00

1 year online subscription

USD  $92.00

Student 2 year online subscription

USD  $131.00

2 year online subscription

USD  $175.00

Purpose: To analyze the effects of 2 combined training methods on the cardiometabolic risk factors in adolescents. Methods: A total of 76 adolescents (16.1 [1.1] y, n = 44 female) were randomized into groups of moderate-intensity continuous training combined with resistance training (MICT + RT), high-intensity interval training combined with resistance training (HIIT + RT), or control. The training sessions were performed twice weekly for 12 weeks. The outcomes evaluated included body fat percentage, waist circumference, fasting blood glucose, fasting insulin, total cholesterol, triglycerides, low-density lipoprotein, high-density lipoprotein, glycated hemoglobin, insulin resistance index, blood pressure, peak oxygen consumption (VO2peak), and cardiometabolic risk Z score. Results: The intervention groups presented a significant reduction in the cardiometabolic risk Z score after 12 weeks of the combined exercise program. In relation to the cardiometabolic risk Z score between groups, the HIIT + RT group presented a significant intervention effect when compared with the control group (Cohen d = 0.23; P < .05). Significant intervention effects were found when comparing the MICT + RT and control groups for body fat percentage, high-density lipoprotein, and VO2peak. Between the HIIT + RT and control groups, significant intervention effects were found for body fat percentage, blood pressure, and VO2peak. There were not significant differences between the HIIT + RT and MICT + RT groups. Conclusion: Twelve weeks of HIIT + RT and MICT + RT were effective in significantly reducing the cardiometabolic risk in these adolescents.

Faria, Mendonça, Elias, and Stabelini Neto are with the Center of Health Sciences, State University of Northern Paraná, Jacarezinho, Brazil. Faria, Santos, and Stabelini Neto are with the Post-Graduate Program in Physical Education Associate UEM/UEM, State University of Londrina, Londrina, Brazil. Kennedy is with the Priority Research Centre for Physical Activity and Nutrition, School of Education, The University of Newcastle, Callaghan, NSW, Australia.

Faria (fariawf@outlook.com) is corresponding author.

Supplementary Materials

    • Supplementary Table 1 (pdf 14 KB)
  • 1.

    ACSM. ACSM’s Guidelines for Exercise Testing and Prescription. 10th ed. Holland, Netherlands: Wolters Kluwer; 2018.

  • 2.

    Alberga AS, Frappier A, Sigal RJ, Prud’homme D, Kenny GP. A review of randomized controlled trials of aerobic exercise training on fitness and cardiometabolic risk factors in obese adolescents. Phys Sportsmed. 2013;41(2):4457. PubMed ID: 23703517 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Azevedo MR, Araújo CL, Silva MC, Hallal PC. Tracking of physical activity from adolescence to adulthood: a population-based study. Rev Saude Publica. 2007;41(1):6975. PubMed ID: 17273636 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Boutcher SH. High intensity intermittent exercise and fat loss. J Obes. 2011;2011:868305. PubMed ID: 21113312 doi:

  • 5.

    Buchan DS, Ollis S, Young JD, Cooper SM, Shield JPH, Baker JS. High intensity interval running enhances measures of physical fitness but not metabolic measures of cardiovascular disease risk in healthy adolescents. BMC Public Health. 2013;13(1):112. PubMed ID: 23705968 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Cao M, Quan M, Zhuang J. Effect of high-intensity interval training versus moderate-intensity continuous training on cardiorespiratory fitness in children and adolescents: a meta-analysis. Int J Environ Res Public Health. 2019;16(9):1533. PubMed ID: 31052205 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Coffey VG, Hawley JA. Concurrent exercise training: do opposites distract? J Physiol. 2017;595(9):288396. PubMed ID: 27506998 doi:

  • 8.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erbaum; 1988.

  • 9.

    Costigan SA, Eather N, Plotnikoff RC, Taaffe DR, Lubans DR. High-intensity interval training for improving health-related fitness in adolescents: a systematic review and meta-analysis. Br J Sports Med. 2015;49(19):125361. PubMed ID: 26089322

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Craig CL, Marshall AL, Sjöström M, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):138195. PubMed ID: 12900694 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    da Silva MR, Waclawovsky G, Perin L, Camboim I, Eibel B, Lehnen AM. Effects of high-intensity interval training on endothelial function, lipid profile, body composition and physical fitness in normal-weight and overweight-obese adolescents: a clinical trial. Physiol Behav. 2020;213(112728):18. PubMed ID: 31676260 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Dumith SC, Gigante DP, Domingues MR, Kohl HW III. Physical activity change during adolescence: a systematic review and a pooled analysis. Int J Epidemiol. 2011;40(3):68598. PubMed ID: 21245072 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Eddolls WTB, McNarry MA, Stratton G, Winn CON, Mackintosh KA. High-intensity interval training interventions in children and adolescents: a systematic review. Sports Med. 2017;47(11):236374. PubMed ID: 28643209 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Ekelund U, Brage S, Froberg K, et al. TV viewing and physical activity are independently associated with metabolic risk in children: the European youth heart study. Plos Med. 2006;3(12):488. PubMed ID: 17194189 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128 Suppl 5:S21356. PubMed ID: 22084329 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Faigenbaum AD, Kramer W, Blimkie C. Risks and concerns related to youth resistance training. J Strength Con Res. 2009;23(5):6079.

  • 17.

    Faria WF, Elias RGM, Stabelini Neto A. High-intensity interval exercise and ambulatory blood pressure of obese adolescents. Rev Bras Atividade Fis e Saúde. 2018;23(e0026):17.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499502. PubMed ID: 4337382

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    García-Hermoso A, Ramírez-Vélez R, Ramírez-Campillo R, Peterson MD, Martínez-Vizcaíno V. Concurrent aerobic plus resistance exercise versus aerobic exercise alone to improve health outcomes in paediatric obesity: a systematic review and meta-analysis. Br J Sports Med. 2018;52(3):1616. PubMed ID: 27986760 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Gentil P, de Lira CAB, Filho SGC, et al. High intensity interval training does not impair strength gains in response to resistance training in premenopausal women. Eur J Appl Physiol. 2017;117(6):125765. PubMed ID: 28424870 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    George K, Kristi K, Russell P. Exercise and BMI z-score in overweight and obese children and adolescents: a systematic review and network meta-analysis of randomized trials. J Evid Based Med. 2017;10(2):10828. PubMed ID: 27792271 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Guedes DP, Lopes CC, Guedes JERP. Reprodutibilidade e validade do Questionário Internacional de Atividade Física em adolescentes. Rev Bras Med do Esporte. 2005;11(2):1518. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Houtkooper LB, Going SB, Lohman TG, Roche AF, Van Loan M. Bioelectrical impedance estimation of fat-free body mass in children and youth: a cross-validation study. J Appl Physiol. 1992;72(1):36673. PubMed ID: 1537738 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Kelley GA, Kelley KS, Tran ZV. Effects of exercise on resting blood pressure in obese children: a meta-analysis of randomized controlled trials. Prev Cardiol. 2003;6(1):816. PubMed ID: 12624556 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Kessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. 2012;42(6):489509. PubMed ID: 22587821 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kjønniksen L, Torsheim T, Wold B. Tracking of leisure-time physical activity during adolescence and young adulthood: a 10-year longitudinal study. Int J Behav Nutr Phys Act. 2008;5:69. PubMed ID: 19113990

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Kodama S, Saito K, Tanaka S, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events. J Am Med Assoc. 2009;301(19):202435. PubMed ID: 19454641 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Logan GRM, Harris N, Duncan S, Plank LD, Merien F, Schofield G. Low-active male adolescents: a dose response to high-intensity interval training. Med Sci Sports Exerc. 2016;48(3):48190. PubMed ID: 26484952 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Malina RM, Bouchard C, Bar-Or O. Growth, Maturation, and Physical Activity. 2nd ed. Champaign, IL: Human Kinetics; 2004.

  • 30.

    Miguet M, Fearnbach NS, Metz L. et al. Effect of HIIT versus MICT on body composition and energy intake in dietary restrained and unrestrained adolescents with obesity. Appl Physiol Nutr Metab. 2020;45(4):43745. PubMed ID: 31505120 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Mintjens S, Menting MD, Daams JG, van Poppel MNM, Roseboom TJ, Gemke RJBJ. Cardiorespiratory fitness in childhood and adolescence affects future cardiovascular risk factors: a systematic review of longitudinal studies. Sport Med. 2018;48(11):2577605. PubMed ID: 30144022 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Moore SA, Mckay HA, Macdonald H, et al. Enhancing a somatic maturity prediction model. Med Sci Sports Exerc. 2015;47(8):175564. PubMed ID: 25423445 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA. Exercise and hypertension. Med Sci Sports Exerc. 2004;36(3):53353. PubMed ID: 15076798 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Plowman SA, Meredith MD. Fitnessgram/Activitygram Reference Guide. 4th ed. Dallas, TX: The Cooper Institute; 2013:55.

  • 35.

    Pugh JK, Faulkner SH, Jackson AP, King JA, Nimmo MA. Acute molecular responses to concurrent resistance and high-intensity interval exercise in untrained skeletal muscle. Physiol Rep. 2015;3(4):e12364. PubMed ID: 25902785 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Racil G, Zouhal H, Elmontassar W, et al. Plyometric exercise combined with high-intensity interval training improves metabolic abnormalities in young obese females more so than interval training alone. Appl Physiol Nutr Metab. 2016;41(1):1039. PubMed ID: 26701117 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Ratamess NA, Alvar BA, Evetoch TK, et al. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Seiler S, Hetlelid KJ. The impact of rest duration on work intensity and RPE during interval training. Med Sci Sports Exerc. 2005;37(9):16017. PubMed ID: 16177614 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Sluyter JD, Schaaf D, Scragg RKR, Plank LD. Prediction of fatness by standing 8-electrode bioimpedance: a multiethnic adolescent population. Obesity. 2010;18(1):1839. PubMed ID: 19498351 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Sociedade Brasileira de Patologia Clínica/Medicina Laboratorial. Recomendações da Sociedade Brasileira de Patologia Clínica/Medicina Laboratorial (SBPC/ML): coleta e preparo da amostra biológica. 1a ed. Barueri, Brazil: Manole: Minha Editora; 2014:1487.

    • Search Google Scholar
    • Export Citation
  • 41.

    Stanish H, Curtin C, Must A, Phillips S, Maslin M, Bandini L. Enjoyment, barriers, and beliefs about physical activity among adolescents with and without autism spectrum disorder. Adapt Phys Act Q. 2015;32(4):30217. PubMed ID: 26485735 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Steinberger J, Daniels SR, Hagberg N, et al. Cardiovascular health promotion in children: challenges and opportunities for 2020 and beyond: a scientific statement from the American heart association. Circulation. 2016;134(12):23655. PubMed ID: 27515136 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Swainson MG, Ingle L, Carroll S. Cardiorespiratory fitness as a predictor of short-term and lifetime estimated cardiovascular disease risk. Scand J Med Sci Sports. 2019;29(9):140213. PubMed ID: 31102472 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Thivel D, Masurier J, Baquet G, et al. High-intensity interval training in overweight and obese children and adolescents: systematic review and meta-analysis. J Sports Med Phys Fitness. 2019;59(2):31024. PubMed ID: 29589408 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    UNICEF. Adolescence: An Age of Opportunity. New York, NY: Author; 2011.

  • 46.

    U.S. Department of Health and Human Services. 2018 Physical Activity Guidelines Advisory Committee Scientific Report. Washington, DC: Author; 2018.

    • Search Google Scholar
    • Export Citation
  • 47.

    Velez A, Golem DL, Arent SM. The impact of a 12-week resistance training program on strength, body composition, and self-concept of Hispanic adolescents. J Strength Cond Res. 2010;24(4):106573. PubMed ID: 20375719 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Weston KS, Wisløff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2013;48(16):122734. PubMed ID: 24144531 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Wisløff U, Coombes JS, Rognmo O. CrossTalk proposal: high intensity interval training does have a role in risk reduction or treatment of disease. J Physiol. 2015;593(24):52157. PubMed ID: 26642190 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    World Health Organization. WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development. Geneva, Switzerland: Author; 2006.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 284 284 78
Full Text Views 1 1 1
PDF Downloads 0 0 0