School-Based Exercise Intervention Improves Blood Pressure and Parameters of Arterial Stiffness in Children: A Randomized Controlled Trial

in Pediatric Exercise Science
View More View Less
  • 1 Martin-Luther-University Halle-Wittenberg
  • 2 Charité-University Medicine Berlin
  • 3 MSB Medical School Berlin
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $69.00

1 year online subscription

USD  $92.00

Student 2 year online subscription

USD  $131.00

2 year online subscription

USD  $175.00

Purpose: To evaluate the effectiveness of a school-based exercise intervention on endurance performance (EP), blood pressure (BP), and arterial stiffness in children. Methods: A total of 105 students (mean age = 8.2 [0.6] y; 51% girls; body mass index = 17.8 [3.0] kg/m2) were randomized to the intervention group (IG, n = 51) and control group (CG, n = 54). During a 37-week experimental period, the IG received an exercise intervention (2 × 45 min/wk) in addition to their regular school physical education class (3 × 45 min/wk). EP, peripheral and central BP, pulse pressure, augmentation pressure, augmentation index, and aortic pulse wave velocity were assessed. Results: Following the intervention, significant changes (P < .05) in EP, peripheral and central systolic BP, pulse pressure, augmentation pressure, augmentation index, and aortic pulse wave velocity were found in the IG. Children in the CG displayed significant changes in peripheral and central diastolic BP. An analysis of the baseline-to-post changes revealed significant between-group differences in EP (P < .001), pulse pressure (P = .028), augmentation pressure (P = .007), and aortic pulse wave velocity (P = .037) that favored the IG and in peripheral and central diastolic BP that favored the CG. Conclusion: The school-based exercise intervention had beneficial effects not only on EP but also on different hemodynamic parameters.

S. Ketelhut is with the Institute of Sports Science, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany. S.R. Ketelhut is with the Charité-University Medicine Berlin, Berlin, Germany. K. Ketelhut is with the MSB Medical School Berlin, Berlin, Germany.

S. Ketelhut (sascha.ketelhut@gmail.com) is corresponding author.
  • 1.

    Beck D, Martin J, Casey D, Braith R. Exercise training reduces peripheral arterial stiffness and myocardial oxygen demand in young prehypertensive subjects. Am J Hypertens. 2013;26(9):1093102. PubMed ID: 23736111 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Ben-Shlomo Y, Spears M, Boustred C, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63(7):63646. PubMed ID: 24239664 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bersenson GS, Sirinivasan SR, Weihang B, Newman WP, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. N Engl J Med. 1998;338(23):16506. PubMed ID: 9614255 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Borg G. Perceived exertion as an indicator of somatic stress. Scan J Rehab Med. 1970;2(2):928. PubMed ID: 5523831

  • 5.

    Burke V, Milligan RA, Thompson C, et al. A controlled trial of health promotion programs in 11-year-olds using physical activity “enrichment” for higher risk children. J Pediatr. 1998;132(5):8408. PubMed ID: 9602197 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Carson V, Rinaldi RL, Torrance B, et al. Vigorous physical activity and longitudinal associations with cardiometabolic risk factors in youth. Int J Obes. 2014;38(1):1621. PubMed ID: 23887061 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Chuensiri N, Tanaka H, Suksom D. The acute effects of supramaximal high-intensity intermittent exercise on vascular function in lean vs obese prepubescent boys. Pediatr Exerc Sci. 2015;27(4):5039. PubMed ID: 26252080 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    da Costa BGG, da Silva KS, Malheiros LEA, Minatto G, de Lima LRA, Petroski EL. Are adolescents really being sedentary or inactive when at school? An analysis of sedentary behavior and physical activity bouts. Eur J Pediatr. 2018;177(11):170510. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Delgado-Floody P, Espinoza-Silva M, García-Pinillos F, Latorre-Román P. Effects of 28 weeks of high-intensity interval training during physical education classes on cardiometabolic risk factors in Chilean schoolchildren: a pilot trial. Eur J Pediatr. 2018;177(7):101927. PubMed ID: 29680994 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Dobbins M, De Corby K, Robeson P, Husson H, Tirilis D. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6–18. Cochrane Database Syst Rev. 2009;(1):CD007651. PubMed ID: 19160341 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Farrell SW, Finley CE, Haskell WL, Grundy SM. Is there a gradient of mortality risk among men with low cardiorespiratory fitness? Med Sci Sports Exerc. 2015;47(9):182532. PubMed ID: 25551401 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Franssen PM, Imholz BP. Evaluation of the Mobil-O-Graph new generation ABPM device using the ESH criteria. Blood Press Monit. 2015;15(4):22931. PubMed ID: 20658764 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Freedman DS, Khan LK, Dietz WH, Srinivasan SR, Berenson GS. Relationship of childhood obesity to coronary heart disease risk factors in adulthood: the Bogalusa Heart Study. Pediatrics. 2001;108(3):7128. PubMed ID: 11533341 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    García-Hermoso A, Alonso-Martinez AM, Ramírez-Vélez R, Izquierdo M. Effects of exercise intervention on health-related physical fitness and blood pressure in preschool children: a systematic review and meta-analysis of randomized controlled trials. Sports Med. 2019;50(1):17. PubMed ID: 31556009 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Gray L, Lee IM, Sesso HD, Batty GD. Blood pressure in early adulthood, hypertension in middle age, and future cardiovascular disease mortality: HAHS (Harvard Alumni Health Study). J Am Coll Cardiol. 2011;58(23):2396403. PubMed ID: 22115646 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hametner B, Wassertheurer S, Kropf J, Mayer C, Eber B, Weber T. Oscillometric estimation of aortic pulse wave velocity: comparison with intra-aortic catheter measurements. Blood Press Monit. 2013;18(3):1736. PubMed ID: 23571229 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hou D, Yan Y, Liu J, Zhao X, Cheng H, Mi J. Childhood pulse pressure predicts subclinical vascular damage in adulthood: the Beijing Blood Pressure Cohort Study. J Hypertens. 2018;36(8):166370. PubMed ID: 29664810 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Huang C, Wang J, Deng S, She Q, Wu L. The effects of aerobic endurance exercise on pulse wave velocity and intima media thickness in adults: a systematic review and meta‐analysis. Scand J Med Sci Sports. 2016;26(5):47887. PubMed ID: 26059748 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Jankovic S, Stojisavljevic D, Jankovic J, Eric M, Marinkovic J. Association of socioeconomic status measured by education, and cardiovascular health: a population-based cross-sectional study. BMJ Open. 2014;4(7):e005222. PubMed ID: 25031193 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Janssen I, Leblanc A. Systematic review of the health benefits of physical activity in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7(1):40. PubMed ID: 20459784 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kalman M, Inchley J, Sigmundova D, et al. Secular trends in moderate-to-vigorous physical activity in 32 countries from 2002 to 2010: a cross-national perspective. Eur J Public Health. 2015;25(suppl 2):3740. PubMed ID: 25805785 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kann L, McManus T, Harris WA, et al. Youth risk behavior surveillance—United States, 2017. MMWR Surveill Summ. 2018;67(8):1114. PubMed ID: 29902162 doi:

  • 23.

    Ketelhut S, Ketelhut K, Hacke C, Ketelhut RG. Daily physical activity improves vascular function and motor skills in children. J Sports Sci. 2017;5:7888.

    • Search Google Scholar
    • Export Citation
  • 24.

    Ketelhut S, Kircher E, Ketelhut SR, Wehlan E, Ketelhut K. Effectiveness of multi-activity, high-intensity interval training in school-aged children. Int J Sports Med. 2020;41(4):22732. PubMed ID: 31935779 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Ketelhut SR, Ketelhut S, Riedel S, et al. Effects of moderate interval training on heart rate variability among primary school children. Dtsch Z Sportmed. 2017;2017(11):26974. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Khosdel AR, Carney SL, Nair BR, Gillies A. Better management of cardiovascular diseases by pulse wave velocity: combining clinical practice with clinical research using evidenced based medicine. Clin Med Res. 2007;5:4552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Koebnick C, Black MH, Wu J, et al. The prevalence of primary pediatric prehypertension and hypertension in a real-world managed care system. J Clin Hypertens. 2013;15(11):78492. PubMed ID: 24283596 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Kollias A, Lagou S, Zeniodi ME, Boubouchairopoulou N, Stergiou GS. Association of central versus brachial blood pressure with target-organ damage: systematic review and meta-analysis. Hypertension. 2016;67(1):18390. PubMed ID: 26597821doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Kromeyer-Hauschild K, Wabitsch M, Kunze D, et al. Percentiles of body mass index in children and adolescents evaluated from different regional German studies. Monatsschr Kinderh. 2001;149(8):80718. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Kucerová J, Filipovsky J, Staessen JA, et al. Arterial characteristics in normotensive offspring of parents with or without a history of hypertension. Am J Hypertens. 2006;19(3):2649. PubMed ID: 16500511 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Lambrick D, Westrupp N, Kaufmann S, Stoner L, Faulkner J. The effectiveness of a high-intensity games intervention on improving indices of health in young children. J Sports Sci. 2016;34(3):1908. PubMed ID: 26009003 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Li AM, Yin J, Yu CC, et al. The six-minute walk test in healthy children: reliability and validity. Eur Respir J. 2005;25(6):105760. doi:

  • 33.

    London GM, Blacher J, Pannier B, Guérin AP, Marchais SJ, Safar ME. Arterial wave reflections and survival in end-stage renal failure. Hypertens. 2001;38(3):4348. PubMed ID: 11566918 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Lüscher TF. Prevention is better than cure: the new ESC guidelines. Eur Heart J. 2016;37(29):22913. PubMed ID: 27481919 doi:

  • 35.

    Martínez Vizcaíno V, Salcedo Aguilar F, Franquelo Gutiérrez R, et al. Assessment of an after-school physical activity program to prevent obesity among 9- to 10-year-old children: a cluster randomized trial. Int J Obes. 2008;32(1):1222. PubMed ID: 17895883 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Meucci M, Curry CD, Baldari C, Guidetti L, Cook C, Collier SR. Effect of play-based summer break exercise on cardiovascular function in adolescents. Acta Paediatr. 2013;102(1):e248. PubMed ID: 23062246 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Milatz F, Ketelhut S, Heise W, Ketelhut RG. Correlation between cardiorespiratory fitness and arterial compliance at rest and during a cold pressor test [in German]. J Kardiol. 2016;23(1–2):149.

    • Search Google Scholar
    • Export Citation
  • 38.

    Mitchell GF, Hwang SJ, Vasan RS, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121(4):50511. PubMed ID: 20083680 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Neuhauser HK, Thamm M, Ellert U, Hense HW, Rosario AS. Blood pressure percentiles by age and height from nonoverweight children and adolescents in Germany. Pediatrics. 2011;127(4):e97888. PubMed ID: 21382947 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Nurnberger J, Keflioglu-Scheiber A, Opazo Saez AM, Wenzel RR, Philipp T, Schafers RF. Augmentation index is associated with cardiovascular risk. J Hypertens. 2002;20(12):240714. PubMed ID: 12473865 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Oosterhoff M, Joore M, Ferreira I. The effects of school-based lifestyle interventions on body mass index and blood pressure: a multivariate multilevel meta-analysis of randomized controlled trials. Obes Rev. 2016;17(11):113153. PubMed ID: 27432468 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Pahkala K, Laitinen TT, Heinonen OJ, et al. Association of fitness with vascular intima-media thickness and elasticity in adolescence. Pediatrics. 2013;132(1):e7784. PubMed ID: 23753102 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Sakuragi S, Abhayaratna K, Gravenmaker KJ, et al. Influence of adiposity and physical activity on arterial stiffness in healthy children: the Lifestyle of Our Kids Study. Hypertension. 2009;53(4):6116. PubMed ID: 19273744 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Shiraishi M, Murakami T, Higashi K. The accuracy of central blood pressure obtained by oscillometric noninvasive method using Mobil-O-Graph in children and adolescents. J Hypertens. 2020;38(5):81320. PubMed ID: 31990901 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Telama R, Yang X, Leskinen E, et al. Tracking of physical activity from early childhood through youth into adulthood. Med Sci Sport Exerc. 2014;46(5):95562. PubMed ID: 24121247 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Veijalainen A, Tompuri T, Haapala EA, et al. Associations of cardiorespiratory fitness, physical activity, and adiposity with arterial stiffness in children. Scand J Med Sci Sports. 2016;26(8):94350. PubMed ID: 26220100 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Vodak PA, Wilmore JH. Validity of the 6-minute jog-walk and the 600-yard run-walk in estimating endurance capacity in boys, 9–12 years of age. Res Q. 1975;46(2):2304. PubMed ID: 1056071

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    von Haaren B, Härtel S, Seidel I, Schlenker L, Bös K. The validity of the 6-minute run and the 20m shuttle run for 9- to 11-year-old children [in German]. Dtsch Z Sportmed. 2011;62(11):3515.

    • Search Google Scholar
    • Export Citation
  • 49.

    Winston GJ, Palmas W, Lima J, et al. Pulse pressure and subclinical cardiovascular disease in the Multiethnic Study of Atherosclerosis. Am J Hypertens. 2013;26(5):63642. PubMed ID: 23388832 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Wisløff U, Støylen A, Loennechen JP, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115(24):308694. PubMed ID: 17548726 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 243 243 116
Full Text Views 7 7 6
PDF Downloads 6 6 6