The Percentage of Mature Height as a Morphometric Index of Somatic Growth: A Formal Scrutiny of Conventional Simple Ratio Scaling Assumptions

in Pediatric Exercise Science

Click name to view affiliation

Lorenzo LolliFootball Performance & Science Department, Aspire Academy, Doha, Qatar
Football Exchange, Research Institute of Sport Sciences, Liverpool John Moores University, Liverpool, United Kingdom

Search for other papers by Lorenzo Lolli in
Current site
Google Scholar
PubMed
Close
*
,
Amanda JohnsonFaculty of Health, Psychology & Social Care, Health Sciences Department, Manchester Metropolitan University, Manchester, United Kingdom

Search for other papers by Amanda Johnson in
Current site
Google Scholar
PubMed
Close
,
Mauricio MonacoNational Sports Medicine Program, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar

Search for other papers by Mauricio Monaco in
Current site
Google Scholar
PubMed
Close
,
Valter Di SalvoFootball Performance & Science Department, Aspire Academy, Doha, Qatar
Department of Movement, Human and Health Sciences, University of Rome “Foro Italico,”Rome, Italy

Search for other papers by Valter Di Salvo in
Current site
Google Scholar
PubMed
Close
,
Greg AtkinsonFootball Exchange, Research Institute of Sport Sciences, Liverpool John Moores University, Liverpool, United Kingdom

Search for other papers by Greg Atkinson in
Current site
Google Scholar
PubMed
Close
, and
Warren GregsonFootball Performance & Science Department, Aspire Academy, Doha, Qatar
Football Exchange, Research Institute of Sport Sciences, Liverpool John Moores University, Liverpool, United Kingdom

Search for other papers by Warren Gregson in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To assess conventional assumptions that underpin the percentage of mature height index as the simple ratio of screening height (numerator) divided by actual or predicted adult height (denominator). Methods: We examined cross-sectional data from 99 academy youth soccer players (chronological age range, 11.5 to 17.7 y) skeletally immature at the screening time and with adult height measurements available at follow-up. Results: The y-intercept value of −60 cm (95% confidence interval, −115 to −6 cm) from linear regression between screening height and adult height indicated the failure to meet the zero y-intercept assumption. The correlation coefficient between present height and adult height of .64 (95% confidence interval, .50 to .74) was not equal to the ratio of coefficient of variations between these variables (CV x /CV y  = 0.46) suggesting Tanner’s special circumstance was violated. The non-zero correlation between the ratio and the denominator of .21 (95% confidence interval, .01 to .39) indicated that the percentage of mature height was biased low for players with generally shorter adult height, and vice versa. Conclusion: For the first time, we have demonstrated that the percentage of mature height is an inconsistent statistic for determining the extent of completed growth, leading to potentially biased inferences for research and applied purposes.

  • Collapse
  • Expand
  • 1.

    Albrecht GH, Gelvin BR, Hartman SE. Ratios as a size adjustment in morphometrics. Am J Phys Anthropol. 1993;91(4):44168. PubMed ID: 8372935 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Allison DB, Paultre F, Goran MI, Poehlman ET, Heymsfield SB. Statistical considerations regarding the use of ratios to adjust data. Int J Obes Relat Metab Disord. 1995;19(9):64452. PubMed ID: 8574275

    • Search Google Scholar
    • Export Citation
  • 3.

    Alshamrani K, Messina F, Offiah AC. Is the Greulich and Pyle atlas applicable to all ethnicities? A systematic review and meta-analysis. Eur Radiol. 2019;29(6):291023. PubMed ID: 30617474 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Atkinson G, Batterham AM. The percentage flow-mediated dilation index: a large-sample investigation of its appropriateness, potential for bias and causal nexus in vascular medicine. Vasc Med. 2013;18(6):35465. PubMed ID: 24172228 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Atkinson G, Batterham AM. The use of ratios and percentage changes in sports medicine: time for a rethink? Int J Sports Med. 2012;33(7):5056. PubMed ID: 22760546 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Batterham AM, George KP, Whyte G, Sharma S, McKenna W. Scaling cardiac structural data by body dimensions: a review of theory, practice, and problems. Int J Sports Med. 1999;20(8):495502. PubMed ID: 10606211 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Bayley N. Skeletal maturing in adolescence as a basis for determining percentage of completed growth. Child Dev. 1943;14(1):146. doi:

  • 8.

    Bayley N. Tables for predicting adult height from skeletal age and present height. J Pediatr. 1946;28(1):4964. PubMed ID: 21012523 doi:

  • 9.

    Bayley N, Pinneau SR. Tables for predicting adult height from skeletal age: revised for use with the Greulich–Pyle hand standards. J Pediatr. 1952;40(4):42341. PubMed ID: 14918032 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Beunen GP, Rogol AD, Malina RM. Indicators of biological maturation and secular changes in biological maturation. Food Nutr Bull. 2006;27(4 Suppl 5):S24456. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Bland JM, Altman DG. Applying the right statistics: analyses of measurement studies. Ultrasound Obstet Gynecol. 2003;22(1):8593. PubMed ID: 12858311 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Bradley B, Johnson D, Hill M, et al. Bio-banding in academy football: player’s perceptions of a maturity matched tournament. Ann Hum Biol. 2019;46(5):4008. PubMed ID: 31288575 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Cameron N. Measuring maturity. In: Molinari L, Cameron N, Hauspie RC, editors. Methods in Human Growth Research. Cambridge Studies in Biological and Evolutionary Anthropology. Cambridge University Press; 2004:10840.

    • Search Google Scholar
    • Export Citation
  • 14.

    Cameron N. Prediction. In: Molinari L, Cameron N, Hauspie RC, editors. Methods in Human Growth Research. Cambridge Studies in Biological and Evolutionary Anthropology. Cambridge University Press; 2004:35473.

    • Search Google Scholar
    • Export Citation
  • 15.

    Certo ST, Busenbark JR, Kalm M, LePine JA. Divided we fall: how ratios undermine research in strategic management. Organ Res Methods. 2020;23(2):21137. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Chayes F. On ratio correlation in petrography. J Geol. 1949;57(3):23954. doi:

  • 17.

    Cole TJ. The development of growth references and growth charts. Ann Hum Biol. 2012;39(5):38294. PubMed ID: 22780429 doi:

  • 18.

    Cumming SP, Brown DJ, Mitchell S, et al. Premier League academy soccer players’ experiences of competing in a tournament bio-banded for biological maturation. J Sports Sci. 2018;36(7):75765. PubMed ID: 28628369 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Cumming SP, Lloyd RS, Oliver JL, Eisenmann JC, Malina RM. Bio-banding in sport: applications to competition, talent identification, and strength and conditioning of youth athletes. Strength Cond J. 2017;39(2):3447. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Curran-Everett D. Explorations in statistics: the analysis of ratios and normalized data. Adv Physiol Educ. 2013;37(3):2139. PubMed ID: 24022766 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Katch VL. Use of the oxygen/body weight ratio in correlational analyses: spurious correlations and statistical considerations. Med Sci Sports Exerc. 1973;5(4):2537. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Kato S, Ashizawa K, Satoh K. An examination of the definition “final height” for practical use. Ann Hum Biol. 1998;25(3):26370. PubMed ID: 9624464 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Khamis HJ, Roche AF. Predicting adult stature without using skeletal age: the Khamis–Roche method. Pediatrics. 1994;94(4):5047. PubMed ID: 7936860

    • Search Google Scholar
    • Export Citation
  • 24.

    Kronmal RA. Spurious correlation and the fallacy of the ratio standard revisited. J R Stat Soc Ser A Stat Soc. 1993;156(3):37992. doi:

  • 25.

    Lenko HL. Prediction of adult height with various methods in Finnish children. Acta Paediatr Scand. 1979;68(2):8592. PubMed ID: 214992 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Lolli L, Batterham AM, Atkinson G. Ejection fraction as a statistical index of left ventricular systolic function: the first full allometric scrutiny of its appropriateness and accuracy. Clin Physiol Funct Imaging. 2018;38(6):97685. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Lolli L, Batterham AM, Hawkins R, et al. The acute-to-chronic workload ratio: an inaccurate scaling index for an unnecessary normalisation process? Br J Sports Med. 2019;53(24):15102. PubMed ID: 29899049 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Lolli L, Batterham AM, Kratochvil L, Flegr J, Weston KL, Atkinson G. A comprehensive allometric analysis of 2nd digit length to 4th digit length in humans. Proc Biol Sci. 2017;284(1857):20170356. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Lolli L, Johnson A, Monaco M, Cardinale M, Di Salvo V, Gregson W. Tanner–Whitehouse and Modified Bayley–Pinneau adult height predictions in elite youth soccer players from the middle east. Med Sci Sports Exerc. 2021;53(12):268390. PubMed ID: 34649263

    • Search Google Scholar
    • Export Citation
  • 30.

    Lolli L, Johnson A, Monaco M, Di Salvo V, Gregson W. Relative skeletal maturity and performance test outcomes in elite youth Middle Eastern soccer players. Med Sci Sports Exerc. 2022;54(8):132634. PubMed ID: 35389938 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Malina RM. Skeletal age and age verification in youth sport. Sports Med. 2011;41(11):92547. PubMed ID: 21985214 doi:

  • 32.

    Malina RM, Cumming SP, Rogol AD, et al. Bio-banding in youth sports: background, concept, and application. Sports Med. 2019;49(11):167185. PubMed ID: 31429034 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Molinari L, Gasser T. The human growth curve: Distance, velocity and acceleration. In: Molinari L, Cameron N, Hauspie RC, editors. Methods in Human Growth Research. Cambridge Studies in Biological and Evolutionary Anthropology. Cambridge University Press; 2004:2754.

    • Search Google Scholar
    • Export Citation
  • 34.

    Nicolson AB, Hanley C. Indices of physiological maturity: derivation and interrelationships. Child Dev. 1953;24(1):338. PubMed ID: 13082600 doi:

  • 35.

    Packard GC, Boardman TJ. The use of percentages and size-specific indices to normalize physiological data for variation in body size: wasted time, wasted effort? Comp Biochem Physiol Part A Mol Integr Physiol. 1999;122(1):3744. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Pearson K. Mathematical contributions to the theory of evolution. On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc R Soc Lond. 1896;60:48998. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Preece MA. Prediction of adult height: methods and problems. Acta Paediatr Scand Suppl. 1988;347:411. PubMed ID: 3075840

  • 38.

    Reed LJ. On the correlation between any two functions and its application to the general case of spurious correlation. J Wash Acad Sci. 1921;11(19):44955.

    • Search Google Scholar
    • Export Citation
  • 39.

    Roche AF, Tyleshevski F, Rogers E. Non-invasive measurements of physical maturity in children. Res Q Exerc Sport. 1983;54(4):36471. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Roemmich JN, Blizzard RM, Peddada SD, et al. Longitudinal assessment of hormonal and physical alterations during normal puberty in boys. IV: predictions of adult height by the Bayley–Pinneau, Roche–Wainer–Thissen, and Tanner–Whitehouse methods compared. Am J Hum Biol. 1997;9(3):37180. PubMed ID: 28561296 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Rogol AD, Cumming SP, Malina RM. Biobanding: a new paradigm for youth sports and training. Pediatrics. 2018;142(5):e20180423. doi:

  • 42.

    Senn S, Julious S. Measurement in clinical trials: a neglected issue for statisticians? Stat Med. 2009;28(26):3189209. PubMed ID: 19455540 doi:

  • 43.

    Simpkin AJ, Sayers A, Gilthorpe MS, Heron J, Tilling K. Modelling height in adolescence: a comparison of methods for estimating the age at peak height velocity. Ann Hum Biol. 2017;44(8):71522. PubMed ID: 29113497 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Tanner JM. Fallacy of per-weight and per-surface area standards, and their relation to spurious correlation. J Appl Physiol. 1949;2(1):115. PubMed ID: 18133122 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Tanner JM, Whitehouse RH, Marshall WA, Carter BS. Prediction of adult height from height, bone age, and occurrence of menarche, at ages 4 to 16 with allowance for midparent height. Arch Dis Child. 1975;50(1):1426. PubMed ID: 164838 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Thodberg HH, Jenni OG, Ranke MB, Martin DD. Standardization of the Tanner–Whitehouse bone age method in the context of automated image analysis. Ann Hum Biol. 2012;39(1):6875. PubMed ID: 22148971 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Thodberg HH, Juul A, Lomhot J, et al. Adult height prediction models. Springer; 2012.

  • 48.

    Towlson C, MacMaster C, Gonçalves B, et al. The effect of bio-banding on physical and psychological indicators of talent identification in academy soccer players. Sci Med Footb. 2020;6(3):295308. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Yates F. The place of statistics in the study of growth and form. Proc Biol Sci. 1950;137(889):47988. doi:

  • 50.

    Zachmann M, Sobradillo B, Frank M, Frisch H, Prader A. Bayley–Pinneau, Roche–Wainer–Thissen, and Tanner height predictions in normal children and in patients with various pathologic conditions. J Pediatr. 1978;93(5):74955. PubMed ID: 712475 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 798 798 45
Full Text Views 19 19 1
PDF Downloads 37 37 2