Capturing Detectable Relaxin Concentrations in Eumenorrheic Non-Pregnant Women

Click name to view affiliation

Travis Anderson University of North Carolina at Greensboro

Search for other papers by Travis Anderson in
Current site
Google Scholar
PubMed
Close
*
,
Sandra J. Shultz University of North Carolina at Greensboro

Search for other papers by Sandra J. Shultz in
Current site
Google Scholar
PubMed
Close
*
,
Nancy I. Williams Pennsylvania State University

Search for other papers by Nancy I. Williams in
Current site
Google Scholar
PubMed
Close
*
,
Ellen Casey Hospital for Special Surgery

Search for other papers by Ellen Casey in
Current site
Google Scholar
PubMed
Close
*
,
Zachary Kincaid University of North Carolina at Greensboro

Search for other papers by Zachary Kincaid in
Current site
Google Scholar
PubMed
Close
*
,
Jay L. Lieberman Pennsylvania State University

Search for other papers by Jay L. Lieberman in
Current site
Google Scholar
PubMed
Close
*
, and
Laurie Wideman University of North Carolina at Greensboro

Search for other papers by Laurie Wideman in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Evidence suggests menstrual cycle variation in the hormone relaxin may have an impact on ligament integrity and may be associated with risk of anterior cruciate ligament injury in physically active women. However, studies to date have only detected relaxin in a small number of participants, possibly due to inter-individual variability, frequency of sample collection, or analytical techniques. Therefore, the purpose of this study was to analyze serial serum samples in moderately active, eumenorrheic women to identify the proportion of women with detectable relaxin concentrations. Secondary analyses were conducted on two independent data sets. Data Set I (DSI; N = 66) participants provided samples for 6 days of menses and 8–10 days of the luteal phase. Data Set II (DSII; N = 15) participants provided samples every 2–3 days for a full menstrual cycle. Samples were analyzed via a relaxin-2 specific ELISA assay. Limit of detection (LOD) was calculated from the empirical assay data. LOD was calculated as 3.57 pg·ml−1. Relaxin concentrations exceeded the LOD in 90.91% (DSI) and 93.33% (DSII) of participants on at least 1 day of sampling. Actual peak values ranged from 0.0 pg·ml−1 to 118.0 pg·ml−1. Relaxin was detectable in a higher proportion of young women representing a broad range of physical activity levels when sampled more frequently. Future studies investigating relaxin should consider sampling on more than 1 day to accurately capture values among normal menstruating women.

Anderson, Shultz, Kincaid, and Wideman are with the Dept. of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC. Williams and Lieberman are with the Dept. of Kinesiology, Pennsylvania State University, University Park, PA. Casey is with the Dept. of Psychiatry, Hospital for Special Surgery, New York, NY.

Anderson (t_ander2@uncg.edu) is corresponding author.
  • Collapse
  • Expand
  • Armbruster, D.A., & Pry, T. (2008). Limit of blank, limit of detection and limit of quantitation. Clinical Biochemist Reviews, 29(Suppl. 1), 4952.

    • Search Google Scholar
    • Export Citation
  • Arnold, C., Van Bell, C., Rogers, V., & Cooney, T. (2002). The relationship between serum relaxin and knee joint laxity in female athletes. Orthopedics, 25(6), 669673. PubMed ID: 12083578 doi:10.3928/0147-7447-20020601-18

    • Search Google Scholar
    • Export Citation
  • Bani, D. (1997). Relaxin: a pleiotropic hormone. General Pharmacology: The Vascular System, 28(1), 1322. PubMed ID: 9112071 doi:10.1016/S0306-3623(96)00171-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bani, D., Ballati, L., Masini, E., Bigazzi, M., & Bani Sacchi, T. (1997). Relaxin counteracts asthma-like reaction induced by inhaled antigen in sensitized guinea pigs. Endocrinology, 138(5), 19091915. PubMed ID: 9112386 doi:10.1210/endo.138.5.5147

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bani, D., Maurizi, M., & Bigazzi, M. (1995). Relaxin reduces the number of circulating platelets and depresses platelet release from megakaryocytes: studies in rats. Platelets, 6(6), 330335. PubMed ID: 21043760 doi:10.3109/09537109509078467

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bani-Sacchi, T., Bigazzi, M., Bani, D., Mannaioni, P.F., & Masini, E. (1995). Relaxin‐induced increased coronary flow through stimulation of nitric oxide production. British Journal of Pharmacology, 116(1), 15891594. doi:10.1111/j.1476-5381.1995.tb16377.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryant, G.D., Panter, M.E., & Stelmasiak, T. (1975). Immunoreactive relaxin in human serum during the menstrual cycle. The Journal of Clinical Endocrinology & Metabolism, 41(6), 10651069. doi:10.1210/jcem-41-6-1065

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryant-Greenwood, G.D., Rutanen, E.-M., Partanen, S., Coelho, T.K., & Yamamoto, S.Y. (1993). Sequential appearance of relaxin, prolactin and IGFBP-1 during growth and differentiation of the human endometrium. Molecular and Cellular Endocrinology, 95(1), 2329. doi:10.1016/0303-7207(93)90025-F

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dayanithi, G., Cazalis, M., & Nordmann, J.J. (1987). Relaxin affects the release of oxytocin and vasopressin from the neurohypophysis. Nature, 325, 813816. PubMed ID: 2434861 doi:10.1038/325813a0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dehghan, F., Muniandy, S., Yusof, A., & Salleh, N. (2014). Testosterone reduces knee passive range of motion and expression of relaxin receptor isoforms via 5α-dihydrotestosterone and androgen receptor binding. International Journal of Molecular Sciences, 15(3), 46194634. PubMed ID: 24642882 doi:10.3390/ijms15034619

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dragoo, J.L., Castillo, T.N., Braun, H.J., Ridley, B.A., Kennedy, A.C., & Golish, S.R. (2011). Prospective correlation between serum relaxin concentration and anterior cruciate ligament tears among elite collegiate female athletes. The American Journal of Sports Medicine, 39(10), 21752180. PubMed ID: 21737831 doi:10.1177/0363546511413378

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dragoo, J.L., Castillo, T.N., Korotkova, T.A., Kennedy, A.C., Kim, H.J., & Stewart, D.R. (2011). Trends in serum relaxin concentration among elite collegiate female athletes. International Journal of Women’s Health, 3, 19. PubMed ID: 30676931 doi:10.2147/IJWH.S14188

    • Search Google Scholar
    • Export Citation
  • Dragoo, J.L., Lee, R.S., Benhaim, P., Finerman, G.A., & Hame, S.L. (2003). Relaxin receptors in the human female anterior cruciate ligament. The American Journal of Sports Medicine, 31(4), 577584. PubMed ID: 12860548 doi:10.1177/03635465030310041701

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dschietzig, T., & Stangl, K. (2003). Relaxin: a pregnancy hormone as central player of body fluid and circulation homeostasis. Cellular and Molecular Life Sciences, 60(4), 688700. PubMed ID: 12785716 doi:10.1007/s00018-003-2169-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CLSI. (2004). Protocols for determination of limits of detection and limits of quantitation, approved guideline. CLSI EP17-A. Wayne PA: CLSI .

    • Search Google Scholar
    • Export Citation
  • Fevold, H., Hisaw, F.L., & Meyer, R. (1930). The Relaxative Hormone Of The Corpus Lutueum. Its Purification and Concentration. Journal of the American Chemical Society, 52(8), 33403348. doi:10.1021/ja01371a051

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hama, H., Yamamuro, T., & Takeda, T. (1976). Experimental studies on connective tissue of the capsular ligament: influences of aging and sex hormones. Acta Orthopaedica Scandinavica, 47(5), 473479. PubMed ID: 998180 doi:10.3109/17453677608988723

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamolsky, M., & Sparrow, R.C. (1945). Influence of relaxin on mammary development in sexually immature female rats. Proceedings of the Society for Experimental Biology and Medicine, 60(1), 89. doi:10.3181/00379727-60-15074P

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashem, G., Zhang, Q., Hayami, T., Chen, J., Wang, W., & Kapila, S. (2006). Relaxin and β-estradiol modulate targeted matrix degradation in specific synovial joint fibrocartilages: progesterone prevents matrix loss. Arthritis Research & Therapy, 8(4), R98. PubMed ID: 16784544 doi:10.1186/ar1978

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herzberg, S.D., Motu’apuaka, M.L., Lambert, W., Fu, R., Brady, J., & Guise, J.-M. (2017). The effect of menstrual cycle and contraceptives on ACL injuries and laxity: a systematic review and meta-analysis. Orthopaedic Journal of Sports Medicine, 5(7), 110. doi:10.1177/2325967117718781

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hisaw, F.L. (1926). Experimental relaxation of the pubic ligament of the guinea pig. Proceedings of the Society for Experimental Biology and Medicine, 23(8), 661663. doi:10.3181/00379727-23-3107

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loucks, A.B., & Horvath, S.M. (1985). Athletic amenorrhea: a review. Medicine & Science in Sports & Exercise, 17(1), 5672. PubMed ID: 3920472 doi:10.1249/00005768-198502000-00010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moretti, M., Sisti, D., Rocchi, M.B., & Delprete, E. (2011). CLSI EP17-A protocol: a useful tool for better understanding the low end performance of total prostate-specific antigen assays. Clinica Chimica Acta, 412(11), 11431145. doi:10.1016/j.cca.2011.03.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nose-Ogura, S., Yoshino, O., Yamada-Nomoto, K., Nakamura, M., Harada, M., Dohi, M., Okuwaki, T., Osuga, Y., Kawahara, T., & Saito, S. (2017). Oral contraceptive therapy reduces serum relaxin-2 in elite female athletes. Journal of Obstetrics and Gynaecology Research, 43(3), 530535. doi:10.1111/jog.13226

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owens, B.D., Cameron, K.L., Clifton, K.B., Svoboda, S.J., & Wolf, J.M. (2016). Association between serum relaxin and subsequent shoulder instability. Orthopedics, 39(4), e724e728. PubMed ID: 27111077 doi:10.3928/01477447-20160421-01

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prodromos, C.C., Han, Y., Rogowski, J., Joyce, B., & Shi, K. (2007). A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 23(12), 13201325.e6. PubMed ID: 18063176 doi:10.1016/j.arthro.2007.07.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, X., Chua, P.K., Ohira, R.H., & Bryant-Greenwood, G.D. (1997). An autocrine/paracrine role of human decidual relaxin. II. Stromelysin-1 (MMP-3) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1). Biology of Reproduction, 56(4), 812820. PubMed ID: 9096860 doi:10.1095/biolreprod56.4.812

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, X., Garibay-Tupas, J., Chua, P.K., Cachola, L., & Bryant-Greenwood, G.D. (1997). An autocrine/paracrine role of human decidual relaxin. I. Interstitial collagenase (matrix metalloproteinase-1) and tissue plasminogen activator. Biology of Reproduction, 56(4), 800811. PubMed ID: 9096859 doi:10.1095/biolreprod56.4.800

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Core Team. (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

  • Rugg, C.M., Wang, D., Sulzicki, P., & Hame, S.L. (2014). Effects of prior knee surgery on subsequent injury, imaging, and surgery in NCAA collegiate athletes. American Journal of Sports Medicine, 42(4), 959964. PubMed ID: 24519183 doi:10.1177/0363546513519951

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shea, K.G., Pfeiffer, R., Wang, J.H., Curtin, M., & Apel, P.J. (2004). Anterior cruciate ligament injury in pediatric and adolescent soccer players: an analysis of insurance data. Journal of Pediatric Orthopaedics, 24(6), 623628. PubMed ID: 15502559 doi:10.1097/01241398-200411000-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherman, B.M., & Korenman, S.G. (1974). Measurement of plasma LH, FSH, estradiol and progesterone in disorders of the human menstrual cycle: the short luteal phase. The Journal of Clinical Endocrinology & Metabolism, 38(1), 8993. PubMed ID: 4809644 doi:10.1210/jcem-38-1-89

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shultz, S.J., Schmitz, R.J., Benjaminse, A., Collins, M., Ford, K., & Kulas, A.S. (2015). ACL Research Retreat VII: An Update on Anterior Cruciate Ligament Injury Risk Factor Identification, Screening, and Prevention: March 19-21, 2015; Greensboro, NC. Journal of Athletic Training, 50(10), 10761093. PubMed ID: 26340613 doi:10.4085/1062-6050-50.10.06

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, D.R., Celniker, A.C., Taylor, C.A., Jr., Cragun, J.R., Overstreet, J.W., & Lasley, B.L. (1990). Relaxin in the peri-implantation period. The Journal of Clinical Endocrinology & Metabolism, 70(6), 17711773. PubMed ID: 2347909 doi:10.1210/jcem-70-6-1771

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unemori, E.N., & Amento, E.P. (1990). Relaxin modulates synthesis and secretion of procollagenase and collagen by human dermal fibroblasts. Journal of Biological Chemistry, 265(18), 1068110685. PubMed ID: 2162358

    • Search Google Scholar
    • Export Citation
  • Wilkinson, T.N., Speed, T.P., Tregear, G.W., & Bathgate, R.A. (2005). Evolution of the relaxin-like peptide family. BMC Evolutionary Biology, 5(1), 14. doi:10.1186/1471-2148-5-14

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, N.I., Leidy, H.J., Hill, B.R., Lieberman, J.L., Legro, R.S., & Souza, M.J.D. (2014). Magnitude of daily energy deficit predicts frequency but not severity of menstrual disturbances associated with exercise and caloric restriction. American Journal of Physiology-Endocrinology and Metabolism, 308(1), E29E39. PubMed ID: 25352438 doi:10.1152/ajpendo.00386.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolf, J.M., Cameron, K.L., Clifton, K.B., & Owens, B.D. (2013). Serum relaxin levels in young athletic men are comparable with those in women. Orthopedics, 36(2), 128131. PubMed ID: 23379736 doi:10.3928/01477447-20130122-06

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolf, J.M., Williams, A.E., Delaronde, S., Leger, R., Clifton, K.B., & King, K.B. (2013). Relationship of serum relaxin to generalized and trapezial-metacarpal joint laxity. The Journal of Hand Surgery, 38(4), 721728. PubMed ID: 23474155 doi:10.1016/j.jhsa.2013.01.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wreje, U., Kristiansson, P., Åberg, H., Byström, B., & von Schoultz, B. (1995). Serum levels of relaxin during the menstrual cycle and oral contraceptive use. Gynecologic and Obstetric Investigation, 39(3), 197200. PubMed ID: 7789917 doi:10.1159/000292408

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2539 717 13
Full Text Views 50 23 1
PDF Downloads 18 5 0