Mechanisms Underlying Menstrual Cycle Effects on Exercise Performance: A Scoping Review

Click name to view affiliation

Christine Bernstein Sports Medicine and Exercise Physiology Unit, Department of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany

Search for other papers by Christine Bernstein in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2206-7559 *
and
Michael Behringer Sports Medicine and Exercise Physiology Unit, Department of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany

Search for other papers by Michael Behringer in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9503-9965
Restricted access

This scoping review aims to provide a comprehensive overview of biological mechanisms underlying the menstrual cycle’s impact on various performance-determining anatomical and physiological parameters. It is intended to identify the various proposed vital concepts and theories that may explain performance changes following hormonal fluctuations. The review was performed following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews protocol. A framework of six groups was built such as skeletal muscle physiology, muscle damage, tendons and ligaments, neuromuscular control, cardiovascular system, and exercise metabolism to cluster studies thematically and to specify the concept of “performance.” Original research studies published between 1970 and 2021 that were conducted with a naturally menstruating population were considered. Changes in performance regarding the menstrual cycle phase were crucial for inclusion. Topic-specific reviews and systematic reviews were included if they addressed the impact of female steroid hormones on any structure or part of the human body. The review indicates that the impact of estrogen and progesterone is primarily responsible for observed changes in athletic performance during the menstrual cycle. Estrogen seems capable of fostering protein synthesis, diminishing collagen metabolism, preventing muscle damage due to its antioxidant effects, and restraining inhibitory, while promoting excitatory, control by interacting with neurotransmitters. Progesterone is assumed to increase thermoregulation and enhance ventilatory drive by interacting with hypothalamic pathways and may further amplify inhibitory control by interacting with neurotransmitters. The female steroid hormones and the endocrinologic system collaborate in complex interrelationships with biological systems to maintain homeostasis. However, proposed mechanisms are often derived from animal studies and studies conducted in vitro and still remain to be proven true in the human regularly menstruating population. In the future, it is crucial to rely on studies that followed the methodology for cycle monitoring recommendations thoroughly. Otherwise, it is not possible to determine whether hormonal fluctuations cause observed changes in performance or not.

The scope of the literature has displayed various possible influences of menstrual cycle-related hormones on performance. Based on the results, it can be concluded that the effect of estrogen and progesterone on cells and tissues is responsible for cycle-dependent fluctuations in performance-determining parameters.

Based on an interpretation of the results, estrogen and progesterone may influence performance in the short term or affect training adaptations due to receptor-mediated and non-receptor-mediated actions since androgen receptors have been found in several structures.

Assumed mechanisms underlying the menstrual cycle’s influence on performance are often derived from animal studies, studies conducted in vitro, or with women undergoing hormone replacement therapy and still remain to be proven to apply to a human eumenorrheic population. In order to draw definite conclusions, it is critical to conduct studies that strictly adhere to a methodological design that is consistent with current cycle monitoring recommendations.

  • Collapse
  • Expand
  • Ansdell, P., Brownstein, C.G., Skarabot, J., Hicks, K.M., Simoes, D.C.M., Thomas, K., Howatson, G., Hunter, S.K., & Goodall, S. (2019). Menstrual cycle-associated modulations in neuromuscular function and fatigability of the knee extensors in eumenorrheic women. Journal of Applied Physiology, 126(6), 17011712. https://doi.org/10.1152/japplphysiol.01041.2018

    • Search Google Scholar
    • Export Citation
  • Ashley, C.D., Kramer, M.L., & Bishop, P. (2000). Estrogen and substrate metabolism. Sports Medicine, 29(4), 221227. https://doi.org/10.2165/00007256-200029040-00001

    • Search Google Scholar
    • Export Citation
  • Ayres, S., Abplanalp, W., Liu, J.H., & Subbiah, M.T. (1998). Mechanisms involved in the protective effect of estradiol-17β on lipid peroxidation and DNA damage. The American Journal of Physiology, 274(6), E1002E1008. https://doi.org/10.1152/ajpendo.1998.274.6.E1002

    • Search Google Scholar
    • Export Citation
  • Bandyopadhyay, A., & Dalui, R. (2012). Endurance capacity and cardiorespiratory responses in sedentary females during different phases of menstrual cycle. Kathmandu University Medical Journal, 10(40), 2529. https://doi.org/10.3126/kumj.v10i4.10990

    • Search Google Scholar
    • Export Citation
  • Barth, C., Villringer, A., & Sacher, J. (2015). Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Frontiers in Neuroscience, 9, Article 37. https://doi.org/10.3389/fnins.2015.00037

    • Search Google Scholar
    • Export Citation
  • Blagrove, R.C., Bruinvels, G., & Pedlar, C.R. (2020). Variations in strength-related measures during the menstrual cycle in eumenorrheic women: A systematic review and meta-analysis. Journal of Science and Medicine in Sport, 23(12), 12201227. https://doi.org/10.1016/j.jsams.2020.04.022

    • Search Google Scholar
    • Export Citation
  • Blum, I. (1992). Plasma neurotransmitter profile during different phases of the ovulatory cycle. Journal of Clinical Endocrinology & Metabolism, 75(3), 924929. https://doi.org/10.1210/jc.75.3.924

    • Search Google Scholar
    • Export Citation
  • Bonen, A., Low, M.P., & Graham, T.E. (1983). Effects of menstrual cycle on metabolic responses to exercise. Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, 55(5), 15061513. https://doi.org/10.1152/jappl.1983.55.5.1506

    • Search Google Scholar
    • Export Citation
  • Bunt, J.C. (1990). Metabolic actions of Estradiol: Significance for acute and chronic exercise response. Medicine & Science in Sports & Exercise, 22(3), 286290.

    • Search Google Scholar
    • Export Citation
  • Campbell, S.E., Angus, D.J., & Febbraio, M.A. (2001). Glucose kinetics and exercise performance during phases of the menstrual cycle: Effect of glucose ingestion. American Journal of Physiology—Endocrinology and Metabolism, 281(4), 817825. https://doi.org/10.1152/ajpendo.2001.281.4.e817

    • Search Google Scholar
    • Export Citation
  • Carmichael, M.A., Thomson, R.L., Moran, L.J., & Wycherley, T.P. (2021). The impact of menstrual cycle phase on athletes’ performance: A narrative review. International Journal of Environmental Research and Public Health, 18(4), Article 1667. https://doi.org/10.3390/ijerph18041667

    • Search Google Scholar
    • Export Citation
  • Cesar, G.M., Pereira, V.S., Santiago, P.R.P., Benze, B.G., da Costa, P.H.L., Amorim, C.F., & Serrão, F.V. (2011). Variations in dynamic knee valgus and gluteus medius onset timing in non-athletic females related to hormonal changes during the menstrual cycle. The Knee, 18(4), 224230. https://doi.org/10.1016/j.knee.2010.05.004

    • Search Google Scholar
    • Export Citation
  • Consitt, L.A., Copeland, J.L., & Tremblay, M.S. (2002). Endogenous anabolic hormone responses to endurance versus resistance exercise and training in women. Sports Medicine, 32(1), 122. https://doi.org/10.2165/00007256-200232010-00001

    • Search Google Scholar
    • Export Citation
  • Copeland, J.L., Consitt, L.A., & Tremblay, M.S. (2002). Hormonal responses to endurance and resistance exercise in females aged 19–69 years. Journal of Gerontology, 57(4), 158165. https://doi.org/10.1093/gerona/57.4.b158

    • Search Google Scholar
    • Export Citation
  • Costello, J.T., Bieuzen, F., & Bleakley, C.M. (2014). Where are all the female participants in sports and exercise medicine research? European Journal of Sport Science, 14(8), 847851. https://doi.org/10.1080/17461391.2014.911354

    • Search Google Scholar
    • Export Citation
  • Curran, O., MacNamara, A., & Passmore, D. (2019). What about the girls? Exploring the gender data gap in talent development. Frontiers in Sports and Active Living, 1, Article 3. https://doi.org/10.3389/fspor.2019.00003

    • Search Google Scholar
    • Export Citation
  • Debold, E.P. (2012). Recent insights into muscle fatigue at the cross-bridge level. Frontiers in Physiology, 3, Article 151. https://doi.org/10.3389/fphys.2012.00151

    • Search Google Scholar
    • Export Citation
  • Devries, M.C., Hamadeh, M.J., Phillips, S.M., & Tarnopolsky, M.A. (2006). Menstrual cycle phase and sex influence muscle glycogen utilization and glucose turnover during moderate-intensity endurance exercise. American Journal of Physiology—Regulatory Integrative and Comparative Physiology, 291(4), 11201128. https://doi.org/10.1152/ajpregu.00700.2005

    • Search Google Scholar
    • Export Citation
  • Dombovy, M.L., Bonekat, H.W., Williams, T.J., & Staats, B.A. (1987). Exercise performance and ventilatory response in the menstrual cycle. Medicine & Science in Sports & Exercise, 19(2), 111117.

    • Search Google Scholar
    • Export Citation
  • Eiling, E., Bryant, A.L., Petersen, W., Murphy, A., & Hohmann, E. (2007). Effects of menstrual-cycle hormone fluctuations on musculotendinous stiffness and knee joint laxity. Knee Surgery, Sports Traumatology, Arthroscopy, 15(2), 126132. https://doi.org/10.1007/s00167-006-0143-5

    • Search Google Scholar
    • Export Citation
  • Ekenros, L., Papoutsi, Z., Fridén, C., Dahlman Wright, K., & Lindén Hirschberg, A. (2017). Expression of sex steroid hormone receptors in human skeletal muscle during the menstrual cycle. Acta Physiologica, 219(2), 486493. https://doi.org/10.1111/apha.12757

    • Search Google Scholar
    • Export Citation
  • Enns, D.L., & Tiidus, P.M. (2010). The influence of estrogen on skeletal muscle: Sex matters. Sports Medicine, 40(1), 4158. https://doi.org/10.2165/11319760-000000000-00000

    • Search Google Scholar
    • Export Citation
  • Forsyth, J.J., & Reilly, T. (2005). The combined effect of time of day and menstrual cycle on lactate threshold. Medicine & Science in Sports & Exercise, 37(12), 20462053. https://doi.org/10.1249/01.mss.0000179094.47765.d0

    • Search Google Scholar
    • Export Citation
  • Freemas, J.A., Baranauskas, M.N., Constantini, K., Constantini, N., Greenshields, J.T., Mickleborough, T.D., Raglin, J.S., & Schlader, Z.J. (2020). Exercise performance is impaired during the Mid-Luteal phase of the menstrual cycle. Medicine & Science in Sports & Exercise, 3, 442452. https://doi.org/10.1249/mss.0000000000002464

    • Search Google Scholar
    • Export Citation
  • Fu, M.H.H., Maher, A.C., Hamadeh, M.J., Ye, C., & Tarnopolsky, M.A. (2009). Exercise, sex, menstrual cycle phase, and 17β-estradiol influence metabolism-related genes in human skeletal muscle. Physiological Genomics, 40(1), 3447. https://doi.org/10.1152/physiolgenomics.00115.2009

    • Search Google Scholar
    • Export Citation
  • Giersch, G.E.W., Morrissey, M.C., Katch, R.K., Colburn, A.T., Sims, S.T., Stachenfeld, N.S., & Casa, D.J. (2020). Menstrual cycle and thermoregulation during exercise in the heat: A systematic review and meta-analysis. Journal of Science and Medicine in Sport, 23(12), 11341140. https://doi.org/10.1016/j.jsams.2020.05.014

    • Search Google Scholar
    • Export Citation
  • Goldstein, D.S., Levinson, P., & Keiser, H.R. (1983). Plasma and urinary catecholamines during the human ovulatory cycle. American Journal of Obstetrics and Gynecology, 146(7), 824829. https://doi.org/10.1016/0002-9378(83)91086-4

    • Search Google Scholar
    • Export Citation
  • Graja, A., Kacem, M., Hammouda, O., Borji, R., Bouzid, M.A., Souissi, N., & Rebai, H. (2020). Physical, biochemical, and neuromuscular responses to repeated sprint exercise in eumenorrheic female handball players. Journal of Strength and Conditioning Research, 10, Article 3556. https://doi.org/10.1519/jsc.0000000000003556

    • Search Google Scholar
    • Export Citation
  • Grucza, R., Pekkarinen, H., Titov, E.-K., Kononoff, A., & Hanninen, O. (1993). Influence of the menstrual cycle and oral contraceptives on thermoregulatory responses to exercise in young women. European Journal of Applied Physiology and Occupational Physiology, 67, 279285.

    • Search Google Scholar
    • Export Citation
  • Hackney, A.C. (Ed.). (2017). Sex hormones, exercise and women: Scientific and clinical aspects. Springer.

  • Hackney, A.C., Curley, C.S., & Nicklas, B.J. (1991). Physiological responses to submaximal exercise at the mid‐follicular, ovulatory and mid‐luteal phases of the menstrual cycle. Scandinavian Journal of Medicine & Science in Sports, 1(2), 9498. https://doi.org/10.1111/j.1600-0838.1991.tb00277.x

    • Search Google Scholar
    • Export Citation
  • Hackney, A.C., Kallman, A.L., & Ağgön, E. (2019). Female sex hormones and the recovery from exercise: Menstrual cycle phase affects responses. Biomedical Human Kinetics, 11(1), 8789. https://doi.org/10.2478/bhk-2019-0011

    • Search Google Scholar
    • Export Citation
  • Handelsman, D.J., Hirschberg, A.L., & Bermon, S. (2018). Circulating testosterone as the hormonal basis of sex differences in athletic performance. Endocrine Reviews, 39(5), 803829. https://doi.org/10.1210/ER.2018-00020

    • Search Google Scholar
    • Export Citation
  • Hansen, M. (2018). Female hormones: Do they influence muscle and tendon protein metabolism? Proceedings of the Nutrition Society, 77(1), 3241. https://doi.org/10.1017/S0029665117001951

    • Search Google Scholar
    • Export Citation
  • Heitz, N.A., Eisenman, P.A., Beck, C.L., & Walker, J.A. (1999). Hormonal changes throughout the menstrual cycle and increased anterior cruciate ligament laxity in females. Journal of Athletic Training, 34(2), 144149.

    • Search Google Scholar
    • Export Citation
  • Hidalgo-Lopez, E., & Pletzer, B. (2019). Individual differences in the effect of menstrual cycle on basal ganglia inhibitory control. Scientific Reports, 9(1), Article 11063. https://doi.org/10.1038/s41598-019-47426-8

    • Search Google Scholar
    • Export Citation
  • Janse De Jonge, X.A.K., Thompson, M.W., Chuter, V.H., Silk, L.N., & Thom, J.M. (2012). Exercise performance over the menstrual cycle in temperate and hot, humid conditions. Medicine & Science in Sports & Exercise, 44(11), 21902198. https://doi.org/10.1249/MSS.0b013e3182656f13

    • Search Google Scholar
    • Export Citation
  • Joo, M.H., Maehata, E., Adachi, T., Ishida, A., Murai, F., & Mesaki, N. (2004). The relationship between exercise-induced oxidative stress and the menstrual cycle. European Journal of Applied Physiology, 93(1–2), 8286. https://doi.org/10.1007/s00421-004-1168-4

    • Search Google Scholar
    • Export Citation
  • Julian, R., Hecksteden, A., Fullagar, H.H.K., & Meyer, T. (2017). The effects of menstrual cycle phase on physical performance in female soccer players. PLoS One, 12(3), Article 173951. https://doi.org/10.1371/journal.pone.0173951

    • Search Google Scholar
    • Export Citation
  • Jurkowski, J.E.H., Jones, N.L., Toews, C.J., & Sutton, J.R. (1981). Effects of menstrual cycle on blood lactate, O2 delivery, and performance during exercise. Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, 51(6), 14931499. https://doi.org/10.1152/jappl.1981.51.6.1493

    • Search Google Scholar
    • Export Citation
  • Khowailed, I.A., Petrofsky, J., Lohman, E., Daher, N., & Mohamed, O. (2015). 17β-Estradiol induced effects on anterior cruciate ligament laxness and neuromuscular activation patterns in female runners. Journal of Women’s Health, 24(8), 670680. https://doi.org/10.1089/jwh.2014.5184

    • Search Google Scholar
    • Export Citation
  • Knowles, O.E., Aisbett, B., Main, L.C., Drinkwater, E.J., Orellana, L., & Lamon, S. (2019). Resistance training and skeletal muscle protein metabolism in eumenorrheic females: Implications for researchers and practitioners. Sports Medicine, 49(11), 16371650. https://doi.org/10.1007/s40279-019-01132-7

    • Search Google Scholar
    • Export Citation
  • Kraemer, W.J., Fleck, S.J., Dziados, J.E., Harman, E.A., Marchitelli, L.J., Gordon, S.E., Mello, R., Frykman, P.N., Koziris, L.P., & Triplett, N.T. (1993). Changes in hormonal concentrations after different heavy-resistance exercise protocols in women. Journal of Applied Physiology, 75(2), 594604. https://doi.org/10.1152/jappl.1993.75.2.594

    • Search Google Scholar
    • Export Citation
  • Lee, H., Petrofsky, J.S., Daher, N., Berk, L., Laymon, M., & Khowailed, I.A. (2013). Anterior cruciate ligament elasticity and force for flexion during the menstrual cycle. Medical Science Monitor, 19, 10801088. https://doi.org/10.12659/MSM.889393

    • Search Google Scholar
    • Export Citation
  • Leicht, A.S., Hirning, D.A., & Allen, G.D. (2003). Heart rate variability and endogenous sex hormones during the menstrual cycle in young women. Experimental Physiology, 88(3), 441446. https://doi.org/10.1113/eph8802535

    • Search Google Scholar
    • Export Citation
  • Lemoine, S., Granier, P., Tiffoche, C., Rannou-Bekono, F., Thieulant, M.L., & Delamarche, P. (2003). Estrogen receptor alpha mRNA in human skeletal muscles. Medicine & Science in Sports & Exercise, 35(3), 439443. https://doi.org/10.1249/01.MSS.0000053654.14410.78

    • Search Google Scholar
    • Export Citation
  • Liu, S., Al-Shaikh, R., Panossian, V., Finerman, G., & Lane, J. (1997). Estrogen affects the cellular metabolism of the anterior cruciate ligament a potential explanation for female athletic injury. The American Journal of Sports Medicine, 25(5), 704709. https://doi.org/10.1177/036354659702500521

    • Search Google Scholar
    • Export Citation
  • Liu, S.H., Al-Shaikh, R., Panossian, V., & Finerman, G.A.M. (1996). Primary immunolocalization of androgen target cells in the human anterior cruciate ligament. Journal of Orthopaedic Research, 15(5), 526533. https://doi.org/10.1002/jor.1100150505

    • Search Google Scholar
    • Export Citation
  • Lowe, D.A., Baltgalvis, K.A., & Greising, S.M. (2010). Mechanisms behind estrogen’s beneficial effect on muscle strength in females. Exercise and Sport Sciences Reviews, 38(2), 6167. https://doi.org/10.1097/JES.0b013e3181d496bc

    • Search Google Scholar
    • Export Citation
  • Markofski, M.M., & Braun, W.A. (2014). Influence of menstrual cycle on indices of contraction-induced muscle damage. Journal of Strength and Conditioning Research, 28(9), 26492656. https://doi.org/10.1519/JSC.0000000000000429

    • Search Google Scholar
    • Export Citation
  • Mattu, A.T., Iannetta, D., MacInnis, M.J., Doyle-Baker, P.K., & Murias, J.M. (2020). Menstrual and oral contraceptive cycle phases do not affect submaximal and maximal exercise responses. Scandinavian Journal of Medicine and Science in Sports, 30(3), 472484. https://doi.org/10.1111/sms.13590

    • Search Google Scholar
    • Export Citation
  • McCracken, M., Ainsworth, B., & Hackney, A.C. (1994). Effects of the menstrual cycle phase on the blood lactate responses to exercise. European Journal of Applied Physiology and Occupational Physiology, 69(2), 174175. https://doi.org/10.1007/BF00609412

    • Search Google Scholar
    • Export Citation
  • McNulty, K.L., Elliott-Sale, K.J., Dolan, E., Swinton, P.A., Ansdell, P., Goodall, S., Thomas, K., & Hicks, K.M. (2020). The effects of menstrual cycle phase on exercise performance in eumenorrheic women: A systematic review and meta-analysis. Sports Medicine, 50, 18131827. https://doi.org/10.1007/s40279-020-01319-3

    • Search Google Scholar
    • Export Citation
  • Miller, B.F., Hansen, M., Olesen, J.L., Flyvbjerg, A., Schwarz, P., Babraj, J.A., Smith, K., Rennie, M.J., & Kjaer, M. (2006). No effect of menstrual cycle on myofibrillar and connective tissue protein synthesis in contracting skeletal muscle. American Journal of Physiology—Endocrinology and Metabolism, 290(1), Article 2005. https://doi.org/10.1152/ajpendo.00300.2005

    • Search Google Scholar
    • Export Citation
  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D.G. (2009). Guidelines and guidance preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), 16. https://doi.org/10.1371/journal.pmed.1000097

    • Search Google Scholar
    • Export Citation
  • Nicklas, B.J., Hackney, A.C., & Sharp, R.L. (1989). The menstrual cycle and exercise: Performance, muscle glycogen, and substrate responses. International Journal of Sports Medicine, 10(4), 264269. https://doi.org/10.1055/s-2007-1024913

    • Search Google Scholar
    • Export Citation
  • Oosthuyse, T., & Bosch, A.N. (2010). The effect of the menstrual cycle on exercise metabolism. Sports Medicine, 40(3), 207227. https://doi.org/10.2165/11317090-000000000-00000

    • Search Google Scholar
    • Export Citation
  • Pallavi, L.C., Souza, U.J.D., & Shivaprakash, G. (2017). Assessment of musculoskeletal strength and levels of fatigue during different phases of menstrual cycle in young adults. Journal of Clinical and Diagnostic Research, 11(2), CC11CC13. https://doi.org/10.7860/JCDR/2017/24316.9408

    • Search Google Scholar
    • Export Citation
  • Pereira, H.M., Larson, R.D., & Bemben, D.A. (2020). Menstrual cycle effects on exercise-induced fatigability. Frontiers in Physiology, 11, Article 517. https://doi.org/10.3389/fphys.2020.00517

    • Search Google Scholar
    • Export Citation
  • Phillips, S.K., Rook, K.M., Siddle, N.C., Bruce, S.A., & Woledge, R.C. (1993). Muscle weakness in women occurs at an earlier age than in men, but strength is preserved by hormone replacement therapy. Clinical Science, 84(1), 9598. https://doi.org/10.1042/cs0840095

    • Search Google Scholar
    • Export Citation
  • Phillips, S.K., Sanderson, A.G., Birch, K., Bruce, S.A., & Woledge, R.C. (1996). Changes in maximal voluntary force of human adductor pollicis muscle during the menstrual cycle. The Journal of Physiology, 496(2), 551557. https://doi.org/10.1113/jphysiol.1996.sp021706

    • Search Google Scholar
    • Export Citation
  • Pivarnik, J.M., Marichal, C.J., Spillman, T., & Morrow, J.R. (1992). Menstrual cycle phase affects temperature regulation during endurance exercise. Journal of Applied Physiology, 72(2), 543548. https://doi.org/10.1152/jappl.1992.72.2.543

    • Search Google Scholar
    • Export Citation
  • Pletzer, B., Harris, T.A., & Hidalgo-Lopez, E. (2018). Subcortical structural changes along the menstrual cycle: Beyond the hippocampus. Scientific Reports, 8(1), Article 16042. https://doi.org/10.1038/s41598-018-34247-4

    • Search Google Scholar
    • Export Citation
  • Reis, E., Frick, U., & Schmidtbleicher, D. (1995). Frequency variations of strength training sessions triggered by the phases of the menstrual cycle. International Journal of Sports Medicine, 16(8), 545550. https://doi.org/10.1055/s-2007-973052

    • Search Google Scholar
    • Export Citation
  • Roberts, B.M., Nuckols, G., & Krieger, J.W. (2020). Sex differences in resistance training: A systematic review and meta-analysis. Journal of Strength and Conditioning Research, 34(5), 14481460. https://doi.org/10.1519/JSC.0000000000003521

    • Search Google Scholar
    • Export Citation
  • Rodrigues, P., Correia, M.A., & Wharton, L. (2019). Effect of menstrual cycle on muscle strength. Journal of Exercise Physiology Online, 22(5), 8997.

    • Search Google Scholar
    • Export Citation
  • Romero-Parra, N., Cupeiro, R., Alfaro-Magallanes, V.M., Rael, B., Rubio-Arias, J., Peinado, A.B., & Benito, P.J. (2021). Exercise-induced muscle damage during the menstrual cycle: A systematic review and meta-analysis. Journal of Strength and Conditioning Research, 35(2), 549561. https://doi.org/10.1519/JSC.0000000000003878

    • Search Google Scholar
    • Export Citation
  • Sakamaki, M., Yasuda, T., & Abe, T. (2012). Comparison of low-intensity blood flow-restricted training-induced muscular hypertrophy in eumenorrheic women in the follicular phase and luteal phase and age-matched men. Clinical Physiology and Functional Imaging, 32(3), 185191. https://doi.org/10.1111/j.1475-097X.2011.01075.x

    • Search Google Scholar
    • Export Citation
  • Sakamaki-Sunaga, M., Min, S., Kamemoto, K., & Okamoto, T. (2016). Effects of Menstrual Cycle Phase-dependent resistance training frequency on muscular hypertrophy and strength. Journal of Strength and Conditioning Research, 30(6), 17271734.

    • Search Google Scholar
    • Export Citation
  • Sarwar, R., Niclos, B.B., & Rutherford, O.M. (1996). Changes in muscle strength, relaxation rate and fatiguability during the human menstrual cycle. Journal of Physiology, 493(1), 267272. https://doi.org/10.1113/jphysiol.1996.sp021381

    • Search Google Scholar
    • Export Citation
  • Sato, N., Miyake, S., Akatsu, J., & Kumashiro, M. (1995). Power spectral analysis of heart rate variability in healthy young women during the normal menstrual cycle. Psychosomatic Medicine, 57(4), 331335. https://doi.org/10.1097/00006842-199507000-00004

    • Search Google Scholar
    • Export Citation
  • Schmalenberger, K.M., Eisenlohr-Moul, T.A., Würth, L., Schneider, E., Thayer, J.F., Ditzen, B., & Jarczok, M.N. (2019). A systematic review and meta-analysis of within-person changes in cardiac vagal activity across the menstrual cycle: Implications for female health and future studies. Journal of Clinical Medicine, 8, Article 111946. https://doi.org/10.3390/jcm8111946

    • Search Google Scholar
    • Export Citation
  • Schoene, R.B., Robertson, H.T., Pierson, D.J., & Peterson, A.P. (1981). Respiratory drives and exercise in menstrual cycles of athletic and nonathletic women. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 50(6), 13001305. https://doi.org/10.1152/jappl.1981.50.6.1300

    • Search Google Scholar
    • Export Citation
  • Shultz, S.J., Kirk, S.E., Johnson, M.L., Sander, T.C., & Perrin, D.H. (2004). Relationship between sex hormones and anterior knee laxity across the menstrual cycle. Medicine & Science in Sports & Exercise, 36(7), 11651174. https://doi.org/10.1249/01.mss.0000132270.43579.1a

    • Search Google Scholar
    • Export Citation
  • Sipavičiene, S., Daniusevičiute, L., Kliziene, I., Kamandulis, S., & Skurvydas, A. (2013). Effects of estrogen fluctuation during the menstrual cycle on the response to stretch-shortening exercise in females. BioMed Research International, 2013, Article 243572. https://doi.org/10.1155/2013/243572

    • Search Google Scholar
    • Export Citation
  • Sung, E., Han, A., Hinrichs, T., Vorgerd, M., Manchado, C., & Platen, P. (2014). Effects of follicular versus luteal phase-based strength training in young women. SpringerPlus, 3(1), Article 668. https://doi.org/10.1186/2193-1801-3-668

    • Search Google Scholar
    • Export Citation
  • Tenan, M.S., Hackney, A.C., & Griffin, L. (2016). Maximal force and tremor changes across the menstrual cycle. European Journal of Applied Physiology, 116(1), 153160. https://doi.org/10.1007/s00421-015-3258-x

    • Search Google Scholar
    • Export Citation
  • Tenan, M.S., Peng, Y.L., Hackney, A.C., & Griffin, L. (2013). Menstrual cycle mediates vastus medialis and vastus medialis oblique muscle activity. Medicine & Science in Sports & Exercise, 45(11), 21512157. https://doi.org/10.1249/MSS.0b013e318299a69d

    • Search Google Scholar
    • Export Citation
  • Tiller, N.B., Elliott-Sale, K.J., Knechtle, B., Wilson, P.B., Roberts, J.D., & Millet, G.Y. (2021). Do sex differences in physiology confer a female advantage in ultra-endurance sport? Sports Medicine, 51, 895915. https://doi.org/10.1007/s40279-020-01417-2

    • Search Google Scholar
    • Export Citation
  • Tricco, A., Lillie, E., Zarin, W., O’Brien, K.K., & Colquhoun, H. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, 169(7), 467473. https://doi.org/doi.org/10.7326/M18-0850

    • Search Google Scholar
    • Export Citation
  • Vingren, J.L., Kraemer, W.J., Ratamess, N.A., Anderson, J.M., Volek, J.S., & Maresh, C.M. (2010). Testosterone physiology in resistance exercise and training the up-stream regulatory elements. Sports Medicine, 40(12), 10371053.

    • Search Google Scholar
    • Export Citation
  • Wiecek, M., Szymura, J., Maciejczyk, M., Cempla, J., & Szygula, Z. (2016). Effect of sex and menstrual cycle in women on starting speed, anaerobic endurance and muscle power. Acta Physiologica Hungarica, 103(1), 127132. https://doi.org/10.1556/036.103.2016.1.13

    • Search Google Scholar
    • Export Citation
  • Wiik, A., Ekman, M., Johansson,O., Jansson, E., & Esbjörnsson, M. (2009). Expression of both oestrogen receptor alpha and beta in human skeletal muscle tissue. Histochemistry and Cell Biology, 131, 181189. https://doi.org/10.1007/s00418-008-0512-x

    • Search Google Scholar
    • Export Citation
  • Williams, T., Walz, E., Lane, A.R., Pebole, M., & Hackney, A.C. (2015). The effect of estrogen on muscle damage biomarkers following prolonged aerobic exercise in eumenorrheic women. Biology of Sport, 32(3), 193198. https://doi.org/10.5604/20831862.1150300

    • Search Google Scholar
    • Export Citation
  • Yildirir, A., Kabakci, G., Akgul, E., Tokgozoglu, L., & Oto, A. (2001). Effects of menstrual cycle on cardiac autonomic innervation as assessed by heart rate variability. Annals of Noninvasive Electrocardiology, 7(1), 6063. https://doi.org/10.1111/j.1542-474x.2001.tb00140.x

    • Search Google Scholar
    • Export Citation
  • Yu, W., Panossian, V., Hatch, J.D., Liu, S.H., & Finerman, G.A. (2001). Combined effects of estrogen and progesterone on the anterior cruciate ligament. Clinical Orthopaedics and Related Research, 383, 268281. https://doi.org/10.1097/00003086-200102000-00031

    • Search Google Scholar
    • Export Citation
  • Yu, W.D., Liu, S.H., Hatch, J.D., Panossian, V., & Finerman, G.A.M. (1999). Effect of estrogen on cellular metabolism of the human anterior cruciate ligament. Clinical Orthopaedics and Related Research, 366, 229238. https://doi.org/10.1097/00003086-199909000-00030

    • Search Google Scholar
    • Export Citation
  • Zderic, T.W., Coggan, A.R., & Ruby, B.C. (2001). Glucose kinetics and substrate oxidation during exercise in the follicular and luteal phases. Journal of Applied Physiology, 90(2), 447453. https://doi.org/10.1152/jappl.2001.90.2.447

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1543 1507 159
Full Text Views 1431 1119 10
PDF Downloads 567 300 6