Browse

You are looking at 41 - 50 of 33,815 items for

  • Refine by Access: All Content x
Clear All
Restricted access

Mary C. Geneau, Ming-Chang Tsai, Dana Agar-Newman, Daniel J. Geneau, Marc Klimstra, and Lachlan P. James

Purpose: Ice hockey is a team invasion sport characterized by repeated high-intensity skating efforts, technical and tactical skill, physical contact, and collisions requiring considerable levels of muscular strength. The purpose of this study was to evaluate the relationships between lower-body vertical force–time metrics and skating qualities in subelite female ice hockey players. Methods: A cross-sectional cohort design was employed utilizing 14 athletes (body mass = 66.7 [1.8] kg; height = 171.6 [6.2] cm; age = 21.1 [1.7] y). The relationships between metrics of lower-body strength collected from a drop jump, squat jump, countermovement jump, loaded countermovement jump, and an isometric squat and 4 skating qualities collected from a linear sprint, repeated sprint test, and a multistage aerobic test were evaluated. Results: The regression models revealed a positive relationship between relative peak force in the isometric squat and skating multistage aerobic test performance (r 2 = .388; P = .017) and a positive relationship between repeated-sprint ability and eccentric mean force during the loaded countermovement jump (r 2 = .595; P = .001). No significant relationships were observed between strength metrics and skating acceleration or maximal velocity. Conclusions: These data suggest that skating ability is most affected by relative isometric strength in female ice hockey players. It is recommended that practitioners focus training on tasks that improve relative force output. It is also recommended that isometric relative peak force be used as a monitoring metric for this cohort.

Restricted access

Blake W. Jones, John D. Willson, Paul DeVita, and Ryan D. Wedge

Chronic exposure to high tibiofemoral joint (TFJ) contact forces can be detrimental to knee joint health. Load carriage increases TFJ contact forces, but it is unclear whether medial and lateral tibiofemoral compartments respond similarly to incremental load carriage. The purpose of our study was to compare TFJ contact forces when walking with 15% and 30% added body weight. Young healthy adults (n = 24) walked for 5 minutes with no load, 15% load, and 30% load on an instrumented treadmill. Total, medial, and lateral TFJ contact peak forces and impulses were calculated via an inverse dynamics informed musculoskeletal model. Results of 1-way repeated measures analyses of variance (α = .05) demonstrated total, medial, and lateral TFJ first peak contact forces and impulses increased significantly with increasing load. Orthogonal polynomial trends demonstrated that the 30% loading condition led to a curvilinear increase in total and lateral TFJ impulses, whereas medial first peak TFJ contact forces and impulses responded linearly to increasing load. The total and lateral compartment impulse increased disproportionally with load carriage, while the medial did not. The medial and lateral compartments responded differently to increasing load during walking, warranting further investigation because it may relate to risk of osteoarthritis.

Restricted access

Michel Marina, Priscila Torrado, Blai Ferrer-Uris, and Albert Busquets

Purpose: To verify whether training the iron cross (IC) with assistive devices (herdos; HIC) and added external load (LHIC) to equate the moments of force developed on the rings could be considered an intermediate step between the nonoverloaded herdos situation (HIC) and the IC performed on the rings. Methods: Relative levels of surface electromyography (sEMG) activity were normalized with respect to a standing IC before comparing gymnasts who can perform the IC on the rings (achievers) and gymnast who cannot (nonachievers) in the 2 herdos conditions (HIC and LHIC). Seven muscles were chosen for sEMG analysis, namely, pectoralis major (PM), latissimus dorsi, teres major, lower trapezius, serratus anterior, biceps brachii (BB), and triceps brachii. Additionally, 3 indices were calculated to measure levels of coactivation: Elbowidx, Scapulaidx, and Shoulderidx. Results: The bigger magnitude of differences in sEMG activity among situations was found for the PM and BB (F ≥ 30.7; P < .001). When comparing the global and the PM, teres major, BB, and triceps brachii activity across groups, nonachievers activated their musculature to a greater extent than the achievers independently of the herdos situation (P ≤ .046). Achievers’ Elbowidx was the only index that was significantly higher (P ≤ .005) in the IC in comparison to LHIC and HIC. Conclusion: sEMG activity of PM and BB was particularly sensitive between situations, independently of the level of achievement. We recommend training the IC by adding external load in the herdos situation to increase muscle activity to levels closer to the rings situation but avoiding the potential factor of injuries.

Restricted access

Marcos Quintana-Cepedal, Omar de la Calle, and Hugo Olmedillas

Clinical Scenario: Injuries that affect the groin region are among the most common in football players. To prevent this condition, studies have focused on strengthening the adductors, hip flexors, or abdominal muscles. Recent investigations have used an eccentric-biased exercise (Copenhagen Adduction Exercise [CAE]) that promotes functional and architectural adaptations in the muscle tissue, though its effect on injury risk reduction is unknown. Clinical Question: Can the Copenhagen Adduction Exercise prevent groin injuries in soccer players? Summary of Key Findings: The literature was searched for studies investigating the potential groin injury risk reduction effect of the CAE. (1) Three studies met the inclusion criteria and were used for this appraisal; (2) one study observed a significantly lower injury rate ratio favoring the group that used the CAE program; and (3) 2 studies found similar or higher injury rates in the intervention groups, not supporting the inclusion of the CAE as a preventative tool. Clinical Bottom Line: There is conflicting evidence that usage of the CAE is superior to not performing adductor strengthening exercises in mitigating the risk of sustaining groin injuries. Given the evidence supporting these findings, it is advisable to exercise caution when contemplating the incorporation of the CAE into training regimens aimed at preventing groin injuries. Strength of Recommendation: There is Grade B evidence to suggest that inclusion of the CAE may not be associated with reduced injury rates.

Restricted access

Francisco J. Amaro-Gahete, María Ruiz-Ruiz, Amalia Cano-Nieto, Guillermo Sanchez-Delgado, Juan M. Alcantara, Francisco M. Acosta, Idoia Labayen, Francisco B. Ortega, and Jonatan R. Ruiz

The present study aimed to investigate the effect of a 24-week aerobic + resistance training programs at moderate versus vigorous intensity on body composition, and the persistence of the changes after a 10-month free-living period, in young untrained adults. This report is based on a secondary analysis from the activating brown adipose tissue through exercise (ACTIBATE) single-center unblinded randomized controlled trial. A total of 144 young adults (65.6% women) aged 18–25 years were randomly allocated to three different groups: (a) aerobic + resistance exercise training program based on the international physical activity recommendations at vigorous intensity (Ex-Vigorous group), (b) at moderate intensity (Ex-Moderate group), and (c) control group (no exercise). Body composition outcomes were determined by a dual-energy X-ray absorptiometry scanner. Both Ex-Vigorous and Ex-Moderate decreased body weight, fat mass, and visceral adipose tissue mass in a similar manner (all p < .04). After a 10-month free-living period, these parameters returned to baseline levels in both exercise groups (all ps < .03). No differences between the exercise groups and the control group were noted in lean mass changes (all ps > .1). A 24-week aerobic + resistance training intervention based on the international physical activity recommendations was enough to improve body weight, fat mass, and visceral adipose tissue mass in untrained young adults, independently of the exercise intensity (moderate vs. vigorous).

Restricted access

Giorgos P. Paradisis, Elias Zacharogiannis, Athanassios Bissas, and Brian Hanley

Purpose: Advanced footwear technology is prevalent in distance running, with research focusing on these “super shoes” in competitive athletes, with less understanding of their value for slower runners. The aim of this study was to compare physiological and biomechanical variables between a model of super shoes (Saucony Endorphin Speed 2) and regular running shoes (Saucony Cohesion 13) in recreational athletes. Methods: We measured peak oxygen uptake (VO2peak) in 10 runners before testing each subject 4 times in a randomly ordered crossover design (ie, Endorphin shoe or Cohesion shoe, running at 65% or 80% of velocity at VO2peak [vVO2peak]). We recorded video data using a high-speed camera (300 Hz) to calculate vertical and leg stiffnesses. Results: 65% vVO2peak was equivalent to a speed of 9.4 km·h−1 (0.4), whereas 80% vVO2peak was equivalent to 11.5 km·h−1 (0.5). Two-way mixed-design analysis of variance showed that oxygen consumption in the Endorphin shoe was 3.9% lower than in the Cohesion shoe at 65% vVO2peak, with an interaction between shoes and speed (P = .020) meaning an increased difference of 5.0% at 80% vVO2peak. There were small increases in vertical and leg stiffnesses in the Endorphin shoes (P < .001); the Endorphin shoe condition also showed trivial to moderate differences in step length, step rate, contact time, and flight time (P < .001). Conclusions: There was a physiological benefit to running in the super shoes even at the slower speed. There were also spatiotemporal and global stiffness improvements indicating that recreational runners benefit from wearing super shoes.

Restricted access

Jennie L. Carter, David J. Lee, Craig G. Perrin, Mayur K. Ranchordas, and Matthew Cole

Resting metabolic rate (RMR) is an important component of total daily energy expenditure; however, it is currently not understood how it varies across a typical competitive match week in professional soccer players. For the first time, we aimed to assess RMR throughout an in-season competitive week in professional soccer players. Additionally, we aimed to assess energy and carbohydrate intake across the same week. Twenty-four professional soccer players from an English Premier League club (age: 18 ± 1.6 years) completed the study. RMR was assessed each morning of a typical competitive match week (match day [MD] −3, −2, −1, +1, +2, and + 3), and dietary intake (including MD) was assessed daily via the remote food photography method and 24-hr recall. Daily training load was quantified using Global Positioning System, daily muscle soreness ratings were recorded, and body composition was assessed via dual-energy X-ray absorptiometry. There was a significant (p = .0004) increase in mean RMR of ∼261 kcal/day on MD + 1, compared with MD − 1. Additionally, volume of oxygen consumed significantly increased at MD + 1 (p = .0002) versus MD − 1. There were no significant differences in daily energy or carbohydrate intake across the competitive week (p > .05), with inadequate carbohydrate intakes on MD − 1 (∼3.9 g/kg body mass), MD (∼4.2 g/kg body mass), and MD + 1 (∼3.6 g/kg body mass) in relation to current recommendations. We report, for the first time, that RMR is significantly increased following a competitive match in professional soccer players. In addition, we confirm previous findings to reinforce that players exhibit inadequate nutrition periodization practices, which may impair physical performance and recovery.

Restricted access

Tanya K. Jones, Kelly J. Brummett, and Ramir Williams