Browse

You are looking at 91 - 100 of 1,846 items for :

  • Sport and Exercise Science/Kinesiology x
  • International Journal of Sport Nutrition and Exercise Metabolism x
  • Physical Education and Coaching x
  • Refine by Access: All Content x
Clear All
Restricted access

Volume 32 (2022): Issue 6 (Nov 2022)

Restricted access

Cardiorespiratory Fitness and Bone Turnover Markers in Adults With Metabolic Syndrome: The Mediator Role of Inflammation

José J. Gil-Cosano, Luis Gracia-Marco, Daniel Courteix, Bruno Lesourd, Robert Chapier, Philippe Obert, Guillaume Walther, Agnes Vinet, David Thivel, Manuel Muñoz-Torres, Ukadike C. Ugbolue, Reza Bagheri, Marek Zak, Frédéric Dutheil, and Esther Ubago-Guisado

The relationship between inflammatory markers and bone turnover in adults is well known, and a negative association between cardiorespiratory fitness (CRF) and inflammatory markers has also been described. Hence, we tested whether the association between CRF and bone turnover markers is mediated by inflammatory markers in adults with metabolic syndrome. A total of 81 adults (58.5 ± 5.0 years, 62.7% women) were included in the analysis. CRF was measured by the 6-min walking test. Serum interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor alpha, high-sensitivity c-reactive protein (hsCRP) and vascular endothelial growth factor, collagen type I cross-linked C-telopeptide, procollagen type I N-terminal propeptide (P1NP), and total osteocalcin were assessed using a sensitive ELISA kit. Body composition was assessed by dual-energy X-ray absorptiometry. Partial correlation was used to test the relationship between CRF, inflammatory markers, and bone turnover markers, controlling for sex, lean mass, and fat mass. Boot-strapped mediation procedures were performed, and indirect effects with confidence intervals not including zero were interpreted as statistically significant. CRF was positively correlated with P1NP levels (r = .228, p = .044) and osteocalcin levels (r = .296, p = .009). Furthermore, CRF was positively correlated with IL-1β levels (r = .340, p = .002) and negatively correlated with hsCRP levels (r = −.335, p = .003), whereas IL-1β levels were positively correlated with P1NP levels (r = .245, p = .030), and hsCRP levels were negatively correlated with P1NP levels (r = −.319, p = .004). Finally, the association between CRF and P1NP levels was totally mediated by hsCRP (percentage of mediation = 39.9). Therefore, CRF benefits on bone formation could be dependent on hsCRP concentrations in this population.

Restricted access

Impact of 24-Hr Diet and Physical Activity Control on Short-Term Precision Error of Dual-Energy X-Ray Absorptiometry Physique Assessment

Gary J. Slater, Ava Farley, Luke Hogarth, Jose L. Areta, Gøran Paulsen, and Ina Garthe

Dual-energy X-ray absorptiometry (DXA) is a popular technique used to quantify physique in athletic populations. Due to biological variation, DXA precision error (PE) may be higher than desired. Adherence to standardized presentation for testing has shown improvement in consecutive-day PE. However, the impact of short-term diet and physical activity standardization prior to testing has not been explored. This warrants investigation, given the process may reduce variance in total body water and muscle solute, both of which can have high daily flux amongst athletes. Twenty (n = 10 males, n = 10 females) recreationally active individuals (age: 30.7 ± 7.5 years; stature: 176.4 ± 9.1 cm; mass: 74.6 ± 14.3 kg) underwent three DXA scans; two consecutive scans on 1 day, and a third either the day before or after. In addition to adhering to standardized presentation for testing, subjects recorded all food/fluid intake plus activity undertaken in the 24 hr prior to the first DXA scan and replicated this the following 24 hr. International Society of Clinical Densitometry recommended techniques were used to calculate same- and consecutive-day PE. There was no significant difference in PE of whole-body fat mass (479 g vs. 626 g) and lean mass (634 g vs. 734 g) between same- and consecutive-day assessments. Same- and consecutive-day PE of whole-body fat mass and lean mass were less than the smallest effect size of interest. Inclusion of 24-hr standardization of diet and physical activity has the potential to reduce biological error further, but this needs to be verified with follow-up investigation.

Open access

Fasting Before Evening Exercise Reduces Net Energy Intake and Increases Fat Oxidation, but Impairs Performance in Healthy Males and Females

Tommy Slater, William J.A. Mode, Mollie G. Pinkney, John Hough, Ruth M. James, Craig Sale, Lewis J. James, and David J. Clayton

Acute morning fasted exercise may create a greater negative 24-hr energy balance than the same exercise performed after a meal, but research exploring fasted evening exercise is limited. This study assessed the effects of 7-hr fasting before evening exercise on energy intake, metabolism, and performance. Sixteen healthy males and females (n = 8 each) completed two randomized, counterbalanced trials. Participants consumed a standardized breakfast (08:30) and lunch (11:30). Two hours before exercise (16:30), participants consumed a meal (543 ± 86 kcal; FED) or remained fasted (FAST). Exercise involved 30-min cycling (∼60% VO2peak) and a 15-min performance test (∼85% VO2peak; 18:30). Ad libitum energy intake was assessed 15 min postexercise. Subjective appetite was measured throughout. Energy intake was 99 ± 162 kcal greater postexercise (p < .05), but 443 ± 128 kcal lower over the day (p < .001) in FAST. Appetite was elevated between the preexercise meal and ad libitum meal in FAST (p < .001), with no further differences (p ≥ .458). Fat oxidation was greater (+3.25 ± 1.99 g), and carbohydrate oxidation was lower (−9.16 ± 5.80 g) during exercise in FAST (p < .001). Exercise performance was 3.8% lower in FAST (153 ± 57 kJ vs. 159 ± 58 kJ, p < .05), with preexercise motivation, energy, readiness, and postexercise enjoyment also lower in FAST (p < .01). Fasted evening exercise reduced net energy intake and increased fat oxidation compared to exercise performed 2 hr after a meal. However, fasting also reduced voluntary performance, motivation, and exercise enjoyment. Future studies are needed to examine the long-term effects of this intervention as a weight management strategy.

Restricted access

Effects of Physical Exercise Training on Cerebral Blood Flow Measurements: A Systematic Review of Human Intervention Studies

Jordi P.D. Kleinloog, Kevin M.R. Nijssen, Ronald P. Mensink, and Peter J. Joris

The aim of this systematic review was to examine the effects of physical exercise training on cerebral blood flow (CBF), which is a physiological marker of cerebrovascular function. Relationships between training-induced effects on CBF with changes in cognitive performance were also discussed. A systematic search was performed up to July 2022. Forty-five intervention studies with experimental, quasi-experimental, or pre–post designs were included. Sixteen studies (median duration: 14 weeks) investigated effects of physical exercise training on CBF markers using magnetic resonance imaging, 20 studies (median duration: 14 weeks) used transcranial Doppler ultrasound, and eight studies (median duration: 8 weeks) used near-infrared spectroscopy. Studies using magnetic resonance imaging observed consistent increases in CBF in the anterior cingulate cortex and hippocampus, but not in whole-brain CBF. Effects on resting CBF—measured with transcranial Doppler ultrasound and near-infrared spectroscopy—were variable, while middle cerebral artery blood flow velocity increased in some studies following exercise or hypercapnic stimuli. Interestingly, concomitant changes in physical fitness and regional CBF were observed, while a relation between training-induced effects on CBF and cognitive performance was evident. In conclusion, exercise training improved cerebrovascular function because regional CBF was changed. Studies are however still needed to establish whether exercise-induced improvements in CBF are sustained over longer periods of time and underlie the observed beneficial effects on cognitive performance.

Open access

A Comparison of Sodium Citrate and Sodium Bicarbonate Ingestion: Blood Alkalosis and Gastrointestinal Symptoms

Charles S. Urwin, Rodney J. Snow, Dominique Condo, Rhiannon M.J. Snipe, Glenn D. Wadley, Lilia Convit, and Amelia J. Carr

This study compared the recommended dose of sodium citrate (SC, 500 mg/kg body mass) and sodium bicarbonate (SB, 300 mg/kg body mass) for blood alkalosis (blood [HCO3 ]) and gastrointestinal symptoms (GIS; number and severity). Sixteen healthy individuals ingested the supplements in a randomized, crossover design. Gelatin capsules were ingested over 15 min alongside a carbohydrate-rich meal, after which participants remained seated for forearm venous blood sample collection and completion of GIS questionnaires every 30 min for 300 min. Time-course and session value (i.e., peak and time to peak) comparisons of SC and SB supplementation were performed using linear mixed models. Peak blood [HCO3 ] was similar for SC (mean 34.2, 95% confidence intervals [33.4, 35.0] mmol/L) and SB (mean 33.6, 95% confidence intervals [32.8, 34.5] mmol/L, p = .308), as was delta blood [HCO3 ] (SC = 7.9 mmol/L; SB = 7.3 mmol/L, p = .478). Blood [HCO3 ] was ≥6 mmol/L above baseline from 180 to 240 min postingestion for SC, significantly later than for SB (120–180 min; p < .001). GIS were mostly minor, and peaked 80–90 min postingestion for SC, and 35–50 min postingestion for SB. There were no significant differences for the number or severity of GIS reported (p > .05 for all parameters). In summary, the recommended doses of SC and SB induce similar blood alkalosis and GIS, but with a different time course.

Restricted access

Volume 32 (2022): Issue 5 (Sep 2022)

Open access

Addition of Fructose to a Carbohydrate-Rich Breakfast Improves Cycling Endurance Capacity in Trained Cyclists

Tim Podlogar, Simon Cirnski, Špela Bokal, Nina Verdel, and Javier T. Gonzalez

It was previously demonstrated that postexercise ingestion of fructose–glucose mixtures can lead to superior liver and equal muscle glycogen synthesis as compared with glucose-based carbohydrates (CHOs) only. After an overnight fast, liver glycogen stores are reduced, and based on this we hypothesized that addition of fructose to a glucose-based breakfast would lead to improved subsequent endurance exercise capacity. In this double-blind cross-over randomized study (eight males, peak oxygen uptake: 62.2 ± 5.4 ml·kg−1·min−1), participants completed two experimental trials consisting of two exercise bouts. In the afternoon of Day 1, they completed a cycling interval training session to normalize glycogen stores after which a standardized high-CHO diet was provided for 4 hr. On Day 2, in the morning, participants received 2 g/kg of CHOs in the form of glucose and rice or fructose and rice, both in a CHO ratio of 1:2. Two hours later they commenced cycling exercise session at the intensity of the first ventilatory threshold until task failure. Exercise capacity was higher in fructose and rice (137.0 ± 22.7 min) as compared with glucose and rice (130.06 ± 19.87 min; p = .046). Blood glucose and blood lactate did not differ between the trials (p > .05) and neither did CHO and fat oxidation rates (p > .05). However, due to the duration of exercise, total CHO oxidation was higher in fructose and rice (326 ± 60 g vs. 298 ± 61 g, p = .009). Present data demonstrate that addition of fructose to a glucose-based CHO source at breakfast improves endurance exercise capacity. Further studies are required to determine the mechanisms and optimal dose and ratio.

Restricted access

Short-Term Creatine Supplementation and Repeated Sprint Ability—A Systematic Review and Meta-Analysis

Mark Glaister and Lauren Rhodes

The aim of this study was to conduct a systematic review and meta-analysis of the effects of short-term creatine supplementation on repeated sprint ability. Fourteen studies met the inclusion criteria of adopting double-blind randomized placebo-controlled designs in which participants (age: 18–60 years) completed a repeated sprint test (number of sprints: 4 < n ≤ 20; sprint duration: ≤10 s; recovery duration: ≤90 s) before and after supplementing with creatine or placebo for 3–7 days in a dose of ∼20 g/day. No exclusion restrictions were placed on the mode of exercise. Meta-analyses were completed using random-effects models, with effects on measures of peak power output, mean power output, and fatigue (performance decline) during each repeated sprint test presented as standardized mean difference (δ), and with effects on body mass and posttest blood lactate concentration presented as raw mean difference (D). Relative to placebo, creatine resulted in a significant increase in body mass (D = 0.79 kg; p < .00001) and mean power output (δ = 0.61; p = .002). However, there was no effect of creatine on measures of peak power (δ = 0.41; p = .10), fatigue (δ = 0.08; p = .61), or posttest blood lactate concentration (D = 0.22 L/min; p = .60). In conclusion, creatine supplementation may increase mean power output during repeated sprint tests, although the absence of corresponding effects on peak power and fatigue means that more research, with measurements of intramuscular creatine content, is necessary to confirm.

Restricted access

Effect of Prior Exercise on Postprandial Lipemia: An Updated Meta-Analysis and Systematic Review

Regis C. Pearson, Betsy Cogan, Sara A. Garcia, and Nathan T. Jenkins

The purpose of this systematic review was to synthesize the results from current literature examining the effects of prior exercise on the postprandial triglyceride (TG) response to evaluate current literature and provide future direction. A quantitative review was performed using meta-analytic methods to quantify individual effect sizes. A moderator analysis was performed to investigate potential variables that could influence the effect of prior exercise on postprandial TG response. Two hundred and seventy-nine effects were retrieved from 165 studies for the total TG response and 142 effects from 87 studies for the incremental area under the curve TG response. There was a moderate effect of exercise on the total TG response (Cohen’s d = −0.47; p < .0001). Moderator analysis revealed exercise energy expenditure significantly moderated the effect of prior exercise on the total TG response (p < .0001). Exercise modality (e.g., cardiovascular, resistance, combination of both cardiovascular and resistance, or standing), cardiovascular exercise type (e.g., continuous, interval, concurrent, or combined), and timing of exercise prior to meal administration significantly affected the total TG response (p < .001). Additionally, exercise had a moderate effect on the incremental area under the curve TG response (Cohen’s d = −0.40; p < .0001). The current analysis reveals a more homogeneous data set than previously reported. The attenuation of postprandial TG appears largely dependent on exercise energy expenditure (∼2 MJ) and the timing of exercise. The effect of prior exercise on the postprandial TG response appears to be transient; therefore, exercise should be frequent to elicit an adaptation.