In-lab, marker-based gait analyses may not represent real-world gait. Real-world gait analyses may be feasible using inertial measurement units (IMUs) in combination with open-source data processing pipelines (OpenSense). Before using OpenSense to study real-world gait, we must determine whether these methods estimate joint kinematics similarly to traditional marker-based motion capture (MoCap) and differentiate groups with clinically different gait mechanics. Healthy young and older adults and older adults with knee osteoarthritis completed this study. We captured MoCap and IMU data during overground walking at 2 speeds. MoCap and IMU kinematics were computed with OpenSim workflows. We tested whether sagittal kinematics differed between MoCap and IMU, whether tools detected between-group differences similarly, and whether kinematics differed between tools by speed. MoCap showed more anterior pelvic tilt (0%–100% stride) and joint flexion than IMU (hip: 0%–38% and 61%–100% stride; knee: 0%–38%, 58%–89%, and 95%–99% stride; and ankle: 6%–99% stride). There were no significant tool-by-group interactions. We found significant tool-by-speed interactions for all angles. While MoCap- and IMU-derived kinematics differed, the lack of tool-by-group interactions suggests consistent tracking across clinical cohorts. Results of the current study suggest that IMU-derived kinematics with OpenSense may enable reliable evaluation of gait in real-world settings.
Browse
Lower Extremity Inverse Kinematics Results Differ Between Inertial Measurement Unit- and Marker-Derived Gait Data
Jocelyn F. Hafer, Julien A. Mihy, Andrew Hunt, Ronald F. Zernicke, and Russell T. Johnson
Volume 39 (2023): Issue 2 (Apr 2023)
Mechanisms of Anterior Cruciate Ligament Tears in Professional National Basketball Association Players: A Video Analysis
Adam J. Petway, Matthew J. Jordan, Scott Epsley, Philip Anloague, and Ernest Rimer
A systematic search was performed of online databases for any anterior cruciate ligament (ACL) injuries within the NBA. Video was obtained of injuries occurring during competition and downloaded for 2-dimensional video analysis. Thirty-five in-game videos were obtained for analysis. Of the reviewed cases, 19% were noncontact ACL injuries where there was no player-to-player contact from an opposing player. Three injury mechanism categories were found based on the events at the point of initial ground contact of the foot of the injured limb: single-leg casting (mean dorsiflexion angle 18.9° (14.4°); mean knee flexion angle 15.6° (7.8°); and mean trunk lateral flexion 18.2° (8.4°)); bilateral hop (mean dorsiflexion angle 18.2° (15.2°), mean knee flexion angle 21° (14.5°), mean trunk extension angle 6.9° (11.4°), and landing angle from the athlete’s center of mass 47.9° (10.1°)); and single-leg landing after contact (mean abduction angle of the swing leg 105.4° (18.1°), mean knee flexion angle of the injured limb 34.2° (8.0°), and mean trunk ipsilateral flexion angle 22.2° (7.0°)).
Minimum Sampling Frequency for Accurate and Reliable Tibial Acceleration Measurements During Rearfoot Strike Running in the Field
Kevin G. Aubol and Clare E. Milner
Field-based tibial acceleration measurements are increasingly common but sampling frequencies vary between accelerometers. The purpose of this study was to determine the minimum sampling frequency needed for reliable and accurate measurement of peak axial and resultant tibial acceleration during running in the field. Tibial acceleration was measured at 7161 Hz in 19 healthy runners on concrete and grass. Acceleration data were down sampled to approximate previously used sampling frequencies. Peak axial and resultant tibial acceleration were calculated for each sampling frequency. The within-session reliability and accuracy of peak axial and resultant tibial accelerations were evaluated using intraclass correlation coefficients, mean differences, and 95% limits of agreements. Intraclass correlation coefficients greater than .9 indicated excellent within-session reliability for both peak axial and resultant tibial acceleration measured while running on concrete and grass. Peak axial and resultant tibial accelerations were 0.5 to 1.4 g lower and minimal detectable differences were up to 0.6 g higher at 102 Hz compared with higher sampling frequencies. We recommend a minimum sampling frequency of 199 Hz for accurate and reliable measurements of peak axial and resultant tibial acceleration in the field.
Variability of Spatiotemporal Gait Kinematics During Treadmill Walking: Is There a Hawthorne Effect?
Saaniya Farhan, Marco A. Avalos, and Noah J. Rosenblatt
Spatiotemporal gait kinematics and their variability are commonly assessed in clinical and laboratory settings to quantify fall risk. Although the Hawthorne effect, or modifications in participant behavior due to knowledge of being observed, has the potential to impact such assessments, it has received minimal attention in the study of gait—particularly gait variability. The purpose of this study was to quantify the Hawthorne effect on variability and central tendency measures of fall-related spatiotemporal gait parameters. Seventeen healthy young adults walked on a treadmill at a self-selected velocity for 2 minutes under covert evaluation (ie, without awareness of being evaluated) and 2 minutes under overt evaluation. The movement was recorded using motion capture technology, from which we calculated mean value and step-to-step variability (using standard deviation and mean absolute deviation) of step length, step width, percent double support, percent stance phase, and stride time. Although central tendencies were unaffected by evaluation type, four-of-five measures of variability were significantly lower during overt evaluation for at least one-of-two metrics. Our results suggest a Hawthorne effect on locomotor control. Researchers should be aware of this phenomenon when designing research studies and interpreting gait assessments.
Movement Onset Detection Methods: A Comparison Using Force Plate Recordings
Brendan L. Pinto and Jack P. Callaghan
Computational approaches for movement onset detection can standardize and automate analyses to improve repeatability, accessibility, and time efficiency. With the increasing interest in assessing time-varying biomechanical signals such as force–time recordings, there remains a need to investigate the recently adopted 5 times the standard deviation (5 × SD) threshold method. In addition, other employed methods and their variations such as the reverse scanning and first derivative methods have been scarcely evaluated. The aim of this study was to compare the 5 × SD threshold method, 3 variations of the reverse scanning method, and 5 variations of the first derivative method against manually selected onsets, in the countermovement jump and squat. Limits of agreement with respect to onsets, manually selected from unfiltered data, were best for the first derivative method using a 10-Hz low-pass filter (limits of agreement: −0.02 to 0.05 s and −0.07 to 0.11 s for the countermovement jump and squat, respectively). Thus, even when the onset of unfiltered data is of primary interest, filtering before calculating the first derivative is necessary as it reduces the amplification of high frequencies. The first derivative approach is also less susceptible to inherent variation during the quiet phase prior to the onset compared to the other approaches investigated.
Are Age, Self-Selected Walking Speed, or Propulsion Force Predictors of Gait-Related Changes in Older Adults?
Dheyani Malde, Natalie Pizzimenti, John McCamley, and Bonnie Sumner
There is limited research that directly compares the effect of reduced speed with reduced propulsive force production (PFP) on age-related gait changes. We aimed to determine how changes in the gait of older adults correlate with age, speed, or peak PFP over a 6-year span. We collected kinematics and kinetics of 17 older subjects at 2 time points. We determined which biomechanical variables changed significantly between visits and used linear regressions to determine whether combinations of self-selected walking speed, peak PFP, and age correlated to changes in these variables. We found a suite of gait-related changes that occurred in the 6-year period, in line with previous aging studies. Of the 10 significant changes, we found 2 with significant regressions. Self-selected walking speed was a significant indicator of step length, not peak PFP or age. Peak PFP was a significant indicator for knee flexion. None of the biomechanical changes were correlated to the chronological age of the subjects. Few gait parameters had a correlation to the independent variables, suggesting that changes in gait mechanics were not solely correlated to peak PFP, speed, and/or age. This study improves understanding of changes in ambulation that lead to age-related gait modifications.
Early Changes in Postural Balance Following Inverted V-Shaped High Tibial Osteotomy in Patients With Knee Osteoarthritis
Kento Sabashi, Takeshi Chiba, Koji Iwasaki, Tomohiro Onodera, Eiji Kondo, Norimasa Iwasaki, and Harukazu Tohyama
Patients with knee osteoarthritis and varus knee deformity have impaired postural balance, resulting in decreased walking performance and an increased risk of falls. This study aimed to investigate the early changes in the postural balance following inverted V-shaped high tibial osteotomy (HTO). Fifteen patients with medial knee osteoarthritis were recruited. Postural balance was assessed using the center-of-pressure (COP) data during single-leg standing before and 6 weeks after inverted V-shaped HTO. The maximum range, mean velocity, and area of COP movements in the anteroposterior and mediolateral directions were analyzed. Preoperative and postoperative visual analog scale for knee pain was assessed. The maximum range of COP in the mediolateral direction decreased (P = .017), whereas the mean velocity of COP in the anteroposterior direction increased 6 weeks postoperatively (P = .011). The visual analog scale score for knee pain significantly improved at 6 weeks postoperatively (P = .006). Valgus correction with inverted V-shaped HTO resulted in improved postural balance in the mediolateral direction and good short-term clinical outcomes early following surgery. Early rehabilitation after inverted V-shaped HTO should focus on postural balance in the anteroposterior direction.
Effects of Gluteus Medius and Biceps Femoris Stimulation on Reduction of Knee Abduction Moment During a Landing Task
Dan Wang, Man Wang, Vikki Wing-Shan Chu, Patrick Shu-Hang Yung, and Daniel T.P. Fong
Anterior cruciate ligament injury prevention should focus primarily on reduction of the knee abduction moment (KAM) in landing tasks. Gluteus medius and hamstring forces are considered to decrease KAM during landing. The effects of different muscle stimulations on KAM reduction were compared using 2 electrode sizes (standard 38 cm2 and half size 19 cm2) during a landing task. Twelve young healthy female adults (22.3 [3.6] y, 1.62 [0.02] m, 50.2 [4.7] kg) were recruited. KAM was calculated under 3 conditions of muscle stimulation (gluteus medius, biceps femoris, and both gluteus medius, and biceps femoris) using 2 electrode sizes, respectively versus no stimulation during a landing task. A repeated-measures analysis of variance determined that KAM differed significantly among stimulation conditions and post hoc analysis revealed that KAM was significantly decreased in conditions of stimulating either the gluteus medius (P < .001) or the biceps femoris (P < .001) with the standard electrode size, and condition of stimulating both gluteus medius and biceps femoris with half-size electrode (P = .012) when compared with the control condition. Therefore, stimulation on the gluteus medius, the biceps femoris, or both muscles could be implemented for the examination of anterior cruciate ligament injury potential.
Rapid Change in the Direction of Hand Movement to Increase Hand Propulsion During Front Crawl Swimming
Shigetada Kudo, Yuji Matsuda, Yoshihisa Sakurai, and Yasushi Ikuta
This study aims to investigate the difference in hand acceleration induced by rapid changes in hand movement directions and propulsion between fast and slow groups of swimmers during front crawl swimming. Twenty-two participants, consisting of 11 fast and 11 slow swimmers, performed front crawl swimming at their maximal effort. Hand acceleration and velocity and the angle of attack were measured using a motion capture system. The dynamic pressure approach was used to estimate hand propulsion. In the insweep phase, the fast group attained significantly higher hand acceleration than the slow group in the lateral and vertical directions (15.31 [3.44] m·s−2 vs 12.23 [2.60] m·s−2 and 14.37 [1.70] m·s−2 vs 12.15 [1.21] m·s−2), and the fast group exerted significantly larger hand propulsion than the slow group (53 [5] N vs 44 [7] N). Although the fast group attained large hand acceleration and propulsion during the insweep phase, the hand velocity and the angle of attack were not significantly different in the 2 groups. The rapid change in hand movement direction could be considered in the technique of underwater arm stroke, particularly in the vertical direction, to increase hand propulsion during front crawl swimming.