You are looking at 101 - 110 of 1,845 items for :

  • Journal of Applied Biomechanics x
  • Athletic Training, Therapy, and Rehabilitation x
  • Refine by Access: All Content x
Clear All
Restricted access

Comparison of Kinematic Movement Patterns Between 2 Subgroups of Females With Low Back Pain and Healthy Women During Sit-to-Stand and Stand-to-Sit

Neda Orakifar, Mohammad Jafar Shaterzadeh-Yazdi, Reza Salehi, Mohammad Mehravar, Neda Namnik, and Seyyed Arash Haghpanah

The purpose of study was to compare the kinematic patterns of the thoracic, lumbar, and pelvis segments and hip joints between 2 low back pain subgroups and healthy women during sit-to-stand and stand-to-sit. Kinematic data of 44 healthy women and 2 subgroups of females with low back pain in 2 subgroups of movement system impairment model (rotation-extension [Rot.Ext] and rotation-flexion [Rot.Flex]) were recorded. Participants performed sit-to-stand and stand-to-sit at a preferred speed. Each task was divided into a pre buttock lifted off/on (pre-BOff/n) phase and a post-BOff/n phase. The Rot.Ext subgroup showed greater range of motion in the thoracic during pre-BOff phase of sit-to-stand (P < .001) and pre-BOn phase of stand-to-sit (P = .01) compared to the other 2 groups. The Rot.Flex subgroup displayed limited left hip joint excursion during sit-to-stand pre-BOff (P = .04) and stand-to-sit post-BOn phases (P = .02). The Rot.Flex subgroup showed greater pelvis tilt excursion during sit-to-stand post-BOff (P = .04) and stand-to-sit pre-BOn (P = .01) and post-BOn phases (P = .01). In subgroups of women with chronic low back pain, there were kinematic changes in adjacent body segments/joints of lumbar spine during sit-to-stand and stand-to-sit tasks.

Restricted access

Effect of Load on Muscle Activity, Kinematics, and Force Production During the Reverse Hyperextension Exercise

Michael A. Lawrence, Matthew J. Somma, and Brian T. Swanson

The reverse hyperextension exercise is used to strengthen posterior chain musculature without axially loading the spine; however, there are no suggestions for loading. Twenty recreationally active individuals (13 males and 7 females; aged 25.4 [2.5] y; height 1.76 [0.09] m; mass 79.3 [15.8] kg) performed 2 sets of 10 repetitions with 50%, 100%, and 150% of bodyweight. Surface electromyography measured erector spinae, gluteus maximus, and biceps femoris activity. Motions of the trunk, lower extremities, and reverse hyperextension exercise pendulum were tracked. A 1-way repeated-measures analysis of variance was used to analyze differences. Few differences were found between 100% and 150% loads; however, heavier loads resulted in increased hip (5.0°) and trunk (4.0°) flexion compared with the 50% load. Similar patterns emerged for peak and integrated muscle activity, with erector spinae and gluteus maximus activity greater in the 100% and 150% loads than in the 50% load, and biceps femoris activation increasing as load increased. Peak force significantly (P < .001) increased with 100% (28% [31%]) and 150% (34% [40%]) loads compared with the 50% load. Findings suggest the reverse hyperextension exercise targets posterior chain musculature, but increasing loads does not linearly increase force and muscle activation.

Restricted access

Metatarsophalangeal Joint Dynamic Stiffness During Toe Rocker Changes With Walking Speed

Luke Nigro and Elisa S. Arch

Dynamic joint stiffness (or simply “stiffness”) is a customization criteria used to tune mechanical properties of orthotic and prosthetic devices. This study examines metatarsophalangeal (MTP) joint stiffness during the toe-rocker phase of barefoot walking and establishes baseline characteristics of MTP joint stiffness. Ten healthy individuals walked at 4 speeds (0.4, 0.6, 0.8, and 1.0 statures·s−1) over level ground. MTP sagittal plane joint angles and moments were calculated during the toe-rocker phase of stance. Least-squares linear regressions were conducted on the MTP moment versus angle curve to determine joint stiffness during early toe rocker and late toe rocker. Multilevel linear models were used to test for statistically significant differences between conditions. Early toe rocker stiffness was positive, while late toe rocker was negative. Both early toe rocker and late toe rocker stiffness increased in magnitude significantly with speed. This study establishes baseline characteristics of MTP joint stiffness in healthy walking, which previously had not been examined through a range of controlled walking speeds. This information can be used in the future as design criteria for orthotic and prosthetic ankle and ankle–foot devices that can imitate, support, and facilitate natural human foot motion during walking better than existing devices.

Restricted access

Methods of Estimating Foot Power and Work in Standing Vertical Jump

Kundan Joshi and Blake M. Ashby

Experimental motion capture studies have commonly considered the foot as a single rigid body even though the foot contains 26 bones and 30 joints. Various methods have been applied to study rigid body deviations of the foot. This study compared 3 methods: distal foot power (DFP), foot power imbalance (FPI), and a 2-segment foot model to study foot power and work in the takeoff phase of standing vertical jumps. Six physically active participants each performed 6 standing vertical jumps from a starting position spanning 2 adjacent force platforms to allow ground reaction forces acting on the foot to be divided at the metatarsophalangeal (MTP) joints. Shortly after movement initiation, DFP showed a power absorption phase followed by a power generation phase. FPI followed a similar pattern with smaller power absorption and a larger power generation compared to DFP. MTP joints primarily generated power in the 2-segment model. The net foot work was –4.0 (1.0) J using DFP, 1.8 (1.1) J using FPI, and 5.1 (0.5) J with MTP. The results suggest that MTP joints are only 1 source of foot power and that differences between DFP and FPI should be further explored in jumping and other movements.

Restricted access

Quadriceps Muscle Action and Association With Knee Joint Biomechanics in Individuals with Anterior Cruciate Ligament Reconstruction

Amanda E. Munsch, Alyssa Evans-Pickett, Hope Davis-Wilson, Brian Pietrosimone, and Jason R. Franz

Insufficient quadriceps force production and altered knee joint biomechanics after anterior cruciate ligament reconstruction (ACLR) may contribute to a heightened risk of osteoarthritis. Quadriceps muscle lengthening dynamics affect force production and knee joint loading; however, no study to our knowledge has quantified in vivo quadriceps dynamics during walking in individuals with ACLR or examined correlations with joint biomechanics. Our purpose was to quantify bilateral vastus lateralis (VL) fascicle length change and the association thereof with gait biomechanics during weight acceptance in individuals with ACLR. The authors hypothesized that ACLR limbs would exhibit more fascicle lengthening than contralateral limbs. The authors also hypothesized that ACLR limbs would exhibit positive correlations between VL fascicle lengthening and knee joint biomechanics during weight acceptance in walking. The authors quantified VL contractile dynamics via cine B-mode ultrasound imaging in 18 individuals with ACLR walking on an instrumented treadmill. In partial support of our hypothesis, ACLR limb VL fascicles activated without length change on average during weight acceptance while fascicle length on the contralateral limb decreased on average. The authors found a positive association between fascicle lengthening and increase in knee extensor moments in both limbs. Our results suggest that examining quadriceps muscle dynamics may elucidate underlying mechanisms relevant to osteoarthritis.

Restricted access

Weighted Baseball Training Affects Arm Speed Without Increasing Elbow and Shoulder Joint Kinetics

Michael E. O’Connell, Kyle E. Lindley, John O. Scheffey, Alex Caravan, Joseph A. Marsh, and Anthony C. Brady

Long-term training effects of weighted ball throwing programs have been well documented. However, the mechanisms that facilitate these effects are poorly understood. The purpose of this study is to investigate within-session effects of throwing overload and underload baseballs to provide mechanistic evidence for weighted baseball training methods. Twenty-six collegiate- and professional-level baseball pitchers aged 20–30 years (mean age 23.5 [2.7] y) participated in a biomechanical evaluation while pitching a series of leather weighted baseballs. A 1-way repeated-measures analysis of variance was used to evaluate the intrasubject effect of ball weight on a total of 15 kinematic, kinetic, and performance parameters. Ball weight significantly affected pitch velocity, maximum elbow flexion, maximum pelvis rotation velocity, maximum shoulder internal rotation velocity, maximum elbow extension velocity, and anterior trunk tilt at ball release. None of the measured arm joint kinetics were significantly affected by ball weight. Training with 3- to 7-ounce (85- to 198-g) baseballs can be used to work on increasing pitching velocity without increasing throwing arm joint kinetics.

Restricted access

The Effects of Constraining Head Rotation on Eye and Whole-Body Coordination During Standing Turns at Different Speeds

Mark Hollands, Fuengfa Khobkhun, Amornpan Ajjimaporn, Rebecca Robins, and Jim Richards

A limitation of the ability to rotate the head with respect to the upper body has been associated with turning problems; however, the extent of head constraints on whole-body coordination has not been fully determined. The aim of this study was to limit head on body rotation and observe the effects on whole-body coordination during standing turns at various speeds. Twelve participants completed standing turns at 180°. A Vicon motion system and a BlueGain Electrooculography system were used to record movement kinematics and measure horizontal eye movements, respectively. All participants were tested at 3 randomized speeds, and under 2 conditions with or without their head constrained using a head, neck, and chest brace which restricted neck movement. A repeated-measures analysis of variance found a significant main effect of turning speed on the onset latency of all segments, peak head–thorax angular separation, and step characteristics. Constraining the head rotation had multiple significant effects including delayed onset latency and decreased intersegmental coordination defined as peak head segmental angular separations, increased total step and step duration, and decreased step size. This indicates the contribution of speed, head, and neck constraints, which have been associated with falls during turning and whole-body coordination.

Restricted access

Assessing Time-Varying Lumbar Flexion–Extension Kinematics Using Automated Pose Estimation

Paul N. Goncharow and Shawn M. Beaudette

The purpose of this research was to evaluate the algorithm DeepLabCut (DLC) against a 3D motion capture system (Vicon Motion Systems Ltd) in the analysis of lumbar and elbow flexion–extension movements. Data were acquired concurrently and tracked using DLC and Vicon. A novel DLC model was trained using video data derived from a subset of participants (training group). Accuracy and precision were assessed using data derived from the training group as well as in a new set of participants (testing group). Two-way analysis of variance were used to detect significant differences between the training and testing sets, capture methods (Vicon vs DLC), as well as potential higher order interaction effect between these independent variables in the estimation of flexion–extension angles and variability. No significant differences were observed in any planar angles, nor were any higher order interactions observed between each motion capture modality with the training versus testing data sets. Bland–Altman plots were used to depict the mean bias and level of agreement between DLC and Vicon for both training and testing data sets. This research suggests that DLC-derived planar kinematics of both the elbow and lumbar spine are of acceptable accuracy and precision when compared with conventional laboratory gold standards (Vicon).

Restricted access

Relationship Between Age and Running Kinematics in Female Recreational Runners

Heather M. Hamilton and Rumit Singh Kakar

Sex-based analyses are important when studying running kinematics. Females experience a unique aging process and demonstrate differences in running biomechanics from males. The purpose was to determine the relationship between age and running kinematics in female runners. Forty-six female runners (18–65 y) ran at self-selected jogging and maximal speed on a treadmill. Lower-extremity joint kinematics were calculated, and 2 principal component analyses (jogging speed and maximal speed) were performed from kinematic variables. Regression was used to examine the relationship between age and identified components, and between age and the variables with the highest loadings within these components. For jogging speed, there was a positive relationship between age and ankle varus at initial contact and a negative relationship between age and peak eversion, hip adduction, knee flexion, dorsiflexion, and hip adduction at initial contact (Ps < .05). For maximal speed, initial contact ankle frontal plane angle became more positive with age, and there was a negative relationship with age and peak eversion, dorsiflexion and knee flexion, and knee flexion and hip adduction at initial contact (Ps < .05). Primarily distal joint angles decreased with increasing age in female recreational runners at self-selected running speeds.

Restricted access

Immediate Effects of Manipulating Footwear or Cadence on the Lower Limb Biomechanics of Female Masters Runners

Jean-Francois Esculier, Jesse M. Charlton, Natasha M. Krowchuk, Julia De Pieri, and Michael A. Hunt

The objective of this study was to compare the immediate effects of modifications to footwear or cadence on lower limb biomechanics of female Masters runners. After analyzing habitual treadmill running biomechanics in 20 female runners (52.4 [8.3] y), we assessed the effects of 5 conditions: (1) barefoot running, (2) Merrell Vapor Glove, (3) Merrell Bare Access, (4) Brooks Pure Flow, and (5) increasing cadence by 10%. In comparison with habitual biomechanics, greater vertical loading rates of the ground reaction force were observed during running barefoot or with a Merrell Vapor Glove or Bare Access. There was high variability among participants as to changes in foot kinematics during the conditions. Running barefoot (−26.0%) and with a Merrell Vapor Glove (−12.5%) reduced sagittal plane knee moments, but increased sagittal plane ankle moments (both 6.1%). Increasing cadence by 10% resulted in a more modest decrease in knee flexion moments (−7.7%) without increasing peak external ankle dorsiflexion moments. When asked if they would prefer minimalist shoes or increasing cadence, 11 participants (55%) chose cadence and 9 (45%) chose footwear. Minimalist footwear decreased sagittal knee moments, but increased vertical loading rate and sagittal ankle moments. Increasing cadence may be useful to lower sagittal knee moments without increasing ankle moments.