Browse

You are looking at 111 - 120 of 177 items for :

  • Journal for the Measurement of Physical Behaviour x
  • Sport and Exercise Science/Kinesiology x
  • Psychology and Behavior in Sport/Exercise x
  • Refine by Access: All Content x
Clear All
Restricted access

Correlates of the Adherence to a 24-hr Wrist-Worn Accelerometer Protocol in a Sample of High School Students

Marcus V.V. Lopes, Bruno G.G. da Costa, Luis E.A. Malheiros, Rafael M. Costa, Ana C.C. Souza, Inacio Crochemore-Silva, and Kelly S. Silva

This study (a) compared accelerometer wear time and compliance between distinct wrist-worn accelerometer data collection plans, (b) analyzed participants’ perception of using accelerometers, and (c) identified sociodemographic and behavioral correlates of accelerometer compliance. A sample of high school students (n = 143) wore accelerometers attached to the wrist by a disposable polyvinyl chloride (PVC) wristband or a reusable fabric wristband for 24 hr over 6 days. Those who wore the reusable fabric band, but not their peers, were instructed to remove the device during water-based activities. Participants answered a questionnaire about sociodemographic and behavioral characteristics and reported their experience wearing the accelerometer. We computed non-wear time and checked participants’ compliance with wear-time criteria (i.e., at least three valid weekdays and one valid weekend day) considering two valid day definitions separately (i.e., at least 16 and 23 hours of accelerometer data). Participants who wore a disposable band had greater compliance compared with those who wore a reusable band for both 16-hr (93% vs. 76%, respectively) and 23-hr valid day definitions (91% vs. 50%, respectively). High schoolers with the following characteristics were less likely to comply with wear time criteria if they (a) engaged in labor-intensive activities, (b) perceived that wearing the monitor hindered their daily activities, or (c) felt ashamed while wearing the accelerometer. In conclusion, the data collection plan composed of using disposable wristbands and not removing the monitor resulted in greater 24-hr accelerometer wear time and compliance. However, a negative experience in using the accelerometer may be a barrier to high schoolers’ adherence to rigorous protocols.

Restricted access

Association Between Accelerometer and Parental Reported Weekend and Weekday Sleeping Patterns and Adiposity Among Preschool-Aged Children

Bridget Coyle-Asbil, Hannah J. Coyle-Asbil, David W.L. Ma, Jess Haines, and Lori Ann Vallis

Sleep is vital for healthy development of young children; however, it is not understood how the quality and quantity vary between the weekends and weekdays (WE–WD). Research focused on older children has demonstrated that there is significant WE–WD variability and that this is associated with adiposity. It is unclear how this is experienced among preschoolers. This study explored: (a) the accuracy of WE–WD sleep as reported in parental logbooks compared with accelerometers; (b) the difference between WE and WD total sleep time, sleep efficiency, and timing, as assessed by accelerometers; and (c) the association between the variability of these metrics and adiposity. Eighty-seven preschoolers (M = 46; 4.48 ± 0.89 years) wore an accelerometer on their right hip for 7 days. Parents were given logbooks to track “lights out” times (sleep onset) and out of bed time (sleep offset). Compared with accelerometers, parental logbook reports indicated earlier sleep onset and later sleep offset times on both WEs and WDs. Accelerometer-derived total sleep time, sleep efficiency, and onset/offset were not significantly different on the WEs and WDs; however, a sex effect was observed, with males going to bed and waking up earlier than females. Correlation analyses revealed that variability of sleep onset times throughout the week was positively correlated with percentage of fat mass in children. Results suggest that variability of sleep onset may be associated with increased adiposity in preschool children. Additional research with larger and more socioeconomically and racially diverse samples is needed to confirm these findings.

Restricted access

Comparison of Fitbit One and ActivPAL3TM in Adults With Multiple Sclerosis in a Free-Living Environment

Golnoush Mehrabani, Douglas P. Gross, Saeideh Aminian, and Patricia J. Manns

Walking is the most common and preferred way for people with multiple sclerosis (MS) to be active. Consumer-grade wearable activity monitors may be used as a tool to assist people with MS to track their walking by counting the number of steps. The authors evaluated the validity of Fitbit One activity tracker in individuals with MS by comparing step counts measured over a 7-day period against ActivPAL3TM (AP). Twenty-five ambulatory adults with MS with an average age 51.7 (10.2) years and gait speed 0.98 (0.47) m/s, median Expanded Disability Status Scale 5.5 (2.5–6.5), and 15 years post-MS diagnosis wore Fitbit One (using both waist and ankle placement) and AP for 7 consecutive days. Validity of Fitbit One for measuring step counts against AP was assessed using intraclass correlation coefficients (ICCs), Bland–Altman plots, and t tests. Regardless of wearing location (waist or ankle), there was good agreement between steps recorded by Fitbit One and AP (ICC: .86 [.82, .90]). The ankle-worn Fitbit measured steps more accurately (ICC: .91 [.81, .95]) than the waist-worn Fitbit (ICC: .81 [.62, .85]) especially in individuals (n = 12) who walked slowly (gait speed = 0.74 m/s). Fitbit One as a user-friendly, inexpensive, consumer-grade activity tracker can accurately record steps in persons with MS in a free-living environment.

Open access

Calibration of the Online Youth Activity Profile Assessment for School-Based Applications

Gregory J. Welk, Pedro F. Saint-Maurice, Philip M. Dixon, Paul R. Hibbing, Yang Bai, Gabriella M. McLoughlin, and Michael Pereira da Silva

A balance between the feasibility and validity of measures is an important consideration for physical activity (PA) research—particularly in school-based research with youth. The present study extends previously tested calibration methods to develop and test new equations for an online version of the youth activity profile (YAP) tool, a self-report tool designed for school applications. Data were collected across different regions and seasons to develop more robust, generalizable equations. The study involved a total of 717 youth from 33 schools (374 elementary [ages 9–11 years], 224 middle [ages 11–14 years], and 119 high school [ages 14–18 years]) in two different states in the United States. Participants wore a Sensewear monitor for a full week and then completed the online YAP at school to report PA and sedentary behaviors in school and at home. Accelerometer data were processed using an R-based segmentation program to compute PA and sedentary behavior levels. Quantile regression models were used with half of the sample to develop item-specific YAP calibration equations, and these were cross validated with the remaining half of the sample. Computed values of mean absolute percentage error ranged from 15 to 25% with slightly lower error observed for the middle school sample. The new equations had improved precision compared with the previous versions when tested on the same sample. The online version of the YAP provides an efficient and effective way to capture school level estimates of PA and sedentary behaviors in youth.

Open access

Changes in Device-Measured Physical Activity Patterns in U.K. Adults Related to the First COVID-19 Lockdown

Andrew P. Kingsnorth, Mhairi Patience, Elena Moltchanova, Dale W. Esliger, Nicola J. Paine, and Matthew Hobbs

The response to COVID-19 resulted in behavioral restrictions to tackle the spread of infection. Initial data indicates that step counts were impacted by lockdown restrictions; however, there is little evidence regarding changes of light and moderate to vigorous physical activity (MVPA) behavioral intensities. In this study, participants were asked to provide longitudinal wearable data from Fitbit devices over a period of 30 weeks, from December 2019 to June 2020. Self-assessed key worker status was captured, along with wearable estimates of steps, light activity, and MVPA. Bayesian change point analyses of data from 97 individuals found that there was a sharp decrease of 1,473 steps (95% credible interval [CI] [−2,218, −709]) and light activity minutes (41.9; 95% CI [−54.3, −29.3]), but an increase in MVPA minutes (11.7; 95% CI [2.9, 19.4]) in the mean weekly totals for nonkey workers. For the key workers, the total number of steps (207; 95% CI [−788, 1,456]) and MVPA minutes increased (20.5; 95% CI [12.6, 28.3]) but light activity decreased by an average of 46.9 min (95% CI [−61.2, −31.8]). Interestingly, the change in steps was commensurate with that observed during Christmas (1,458; 95% CI [−2,286, −554]) for nonkey workers and behavioral changes occurred at different time points and rates depending on key worker status. Results indicate that there were clear behavioral modifications before and during the initial COVID-19 lockdown period, and future research should assess whether any behavioral modifications were sustained over time.

Restricted access

Association of Individual Motor Abilities and Accelerometer-Derived Physical Activity Measures in Preschool-Aged Children

Becky Breau, Berit Brandes, Marvin N. Wright, Christoph Buck, Lori Ann Vallis, and Mirko Brandes

This study explored the relationship between motor abilities and accelerometer-derived measures of physical activity (PA) within preschool-aged children. A total of 193 children (101 girls, 4.2 ± 0.7 years) completed five tests to assess motor abilities, shuttle run (SR), standing long jump, lateral jumping, one-leg stand, and sit and reach. Four PA variables derived from 7-day wrist-worn GENEActiv accelerometers were analyzed including moderate to vigorous PA (in minutes), total PA (in minutes), percentage of total PA time in moderate to vigorous PA, and whether or not children met World Health Organization guidelines for PA. Linear regressions were conducted to explore associations between each PA variable (predictor) and motor ability (outcome). Models were adjusted for age, sex, height, parental education, time spent at sports clubs, and wear time. Models with percentage of total PA time in moderate to vigorous PA were adjusted for percentage of total PA time. Regression analyses indicated that no PA variables were associated with any of the motor abilities, but demographic factors such as age (e.g., SR: ß = −0.45; 95% confidence interval [−1.64, −0.66]), parental education (e.g., SR: ß = 0.25; 95% confidence interval [0.11, 1.87]), or sports club time (e.g., SR: ß = −0.08; 95% confidence interval [−0.98, 0.26]) showed substantial associations with motor abilities. Model strength varied depending on the PA variable and motor ability entered. Results demonstrate that total PA and meeting current PA guidelines may be of importance for motor ability development and should be investigated further. Other covariates showed stronger associations with motor abilities such as time spent at sports clubs and should be investigated in longitudinal settings to assess the associations with individual motor abilities.

Restricted access

Converting Raw Accelerometer Data to Activity Counts Using Open-Source Code: Implementing a MATLAB Code in Python and R, and Comparing the Results to ActiLife

Ruben Brondeel, Yan Kestens, Javad Rahimipour Anaraki, Kevin Stanley, Benoit Thierry, and Daniel Fuller

Background: Closed-source software for processing and analyzing accelerometer data provides little to no information about the algorithms used to transform acceleration data into physical activity indicators. Recently, an algorithm was developed in MATLAB that replicates the frequently used proprietary ActiLife activity counts. The aim of this software profile was (a) to translate the MATLAB algorithm into R and Python and (b) to test the accuracy of the algorithm on free-living data. Methods: As part of the INTErventions, Research, and Action in Cities Team, data were collected from 86 participants in Victoria (Canada). The participants were asked to wear an integrated global positioning system and accelerometer sensor (SenseDoc) for 10 days on the right hip. Raw accelerometer data were processed in ActiLife, MATLAB, R, and Python and compared using Pearson correlation, interclass correlation, and visual inspection. Results: Data were collected for a combined 749 valid days (>10 hr wear time). MATLAB, Python, and R counts per minute on the vertical axis had Pearson correlations with the ActiLife counts per minute of .998, .998, and .999, respectively. All three algorithms overestimated ActiLife counts per minute, some by up to 2.8%. Conclusions: A MATLAB algorithm for deriving ActiLife counts was implemented in R and Python. The different implementations provide similar results to ActiLife counts produced in the closed source software and can, for all practical purposes, be used interchangeably. This opens up possibilities to comparing studies using similar accelerometers from different suppliers, and to using free, open-source software.

Restricted access

Is the Polar M430 a Valid Tool for Estimating Maximal Oxygen Consumption in Adult Females?

Kevin E. Miller, Timothy R. Kempf, Brian C. Rider, and Scott A. Conger

Background: Previous research studies have found that heart rate monitors that predict maximal oxygen consumption ( V ˙ O 2 max ) are valid for males but overestimate V ˙ O 2 max in females. Inaccurate self-reported physical activity (PA) levels may affect the validity of the prediction algorithm used to predict V ˙ O 2 max . Purpose: To investigate the validity of the Polar M430 in predicting V ˙ O 2 max among females with varying PA levels. Methods: Polar M430 was used to predict V ˙ O 2 max ( p V ˙ O 2 max ) for 43 healthy female study participants (26.9 ± 1.3 years), under three conditions: the participant’s self-selected PA category (sPA), one PA category below the sPA (sPA − 1), and one category above the sPA (sPA + 1). Indirect calorimetry was utilized to measure V ˙ O 2 max ( m V ˙ O 2 max ) via a modified Astrand treadmill protocol. Repeated-measures analyses of covariance using age and percentage of body fat as covariates were used to detect differences between groups. Bland–Altman plots were used to assess the precision of the measurement. Results: p V ˙ O 2 max was significantly correlated with m V ˙ O 2 max (r = .695, p < .001). The mean values for p V ˙ O 2 max and m V ˙ O 2 max were 44.58 ± 9.29 and 43.98 ± 8.76, respectively. No significant differences were found between m V ˙ O 2 max , p V ˙ O 2 max , sPA – 1, and sPA + 1 (p = .492). However, the Bland–Altman plots indicated a low level of precision with the estimate. Conclusions: The Polar M430 was a valid method to predict V ˙ O 2 max across different sPA levels in females. Moreover, an under/overestimation in sPA had little effect on the predicted V ˙ O 2 max .

Restricted access

Validity of the iPhone M7 Motion Coprocessor to Estimate Physical Activity During Structured and Free-Living Activities in Healthy Adults

Nicola K. Thomson, Lauren McMichan, Eilidh Macrae, Julien S. Baker, David J. Muggeridge, and Chris Easton

Modern smartphones such as the iPhone contain an integrated accelerometer, which can be used to measure body movement and estimate the volume and intensity of physical activity. Objectives: The primary objective was to assess the validity of the iPhone to measure step count and energy expenditure during laboratory-based physical activities. A further objective was to compare free-living estimates of physical activity between the iPhone and the ActiGraph GT3X+ accelerometer. Methods: Twenty healthy adults wore the iPhone 5S and GT3X+ in a waist-mounted pouch during bouts of treadmill walking, jogging, and other physical activities in the laboratory. Step counts were manually counted, and energy expenditure was measured using indirect calorimetry. During two weeks of free-living, participants (n = 17) continuously wore a GT3X+ attached to their waist and were provided with an iPhone 5S to use as they would their own phone. Results: During treadmill walking, iPhone (703 ± 97 steps) and GT3X+ (675 ± 133 steps) provided accurate measurements of step count compared with the criterion method (700 ± 98 steps). Compared with indirect calorimetry (8 ± 3 kcal·min−1), the iPhone (5 ± 1 kcal·min−1) underestimated energy expenditure with poor agreement. During free-living, the iPhone (7,990 ± 4,673 steps·day−1) recorded a significantly lower (p < .05) daily step count compared with the GT3X+ (9,085 ± 4,647 steps·day−1). Conclusions: The iPhone accurately estimated step count during controlled laboratory walking but recorded a significantly lower volume of physical activity compared with the GT3X+ during free-living.

Restricted access

Volume 4 (2021): Issue 2 (Jun 2021)