Browse
Strategies to Involve End Users in Sport-Science Research
Christopher J. Stevens and Christian Swann
Investigating the Relevance of Maximal Speed and Acceleration in Varsity-Level Female Ice Hockey Players
Alexander S.D. Gamble, Kyle M.A. Thompson, Jessica L. Bigg, Christopher Pignanelli, Lawrence L. Spriet, and Jamie F. Burr
Purpose: To characterize and compare female ice hockey players’ peak skating speed and acceleration ability during linear sprints and gameplay. We also sought to quantify the time spent at various speeds and the frequency of accelerations at different thresholds during games. Methods: Seventeen varsity-level female ice hockey players (20 [1.4] y, 68.9 [4.9] kg, 167.6 [4.7] cm) participated in an on-ice practice session (performing 3 × 40-m linear sprints) and 4 regular-season games while being monitored using a local positioning system. Speed and acceleration were recorded from the sprint and within-game monitoring. Time on ice spent in relative skating speed zones and the frequency of accelerations at different intensities were recorded. Results: Players’ greatest peak speeds (29.5 [1.3] vs 28.3 [1.1] km/h) and accelerations (4.39 [0.48] vs 3.34 [0.36] m/s2) reached during gameplay were higher than those reached in linear sprinting (both P < .01). Peak in-game values were moderately predicted by linear sprint values for speed (r = .69, P < .01) but not for acceleration (r < .01, P = .95). Players spent little time at near-peak linear sprint speeds (≥80% [22.7 km/h], ∼3% time on ice; ≥90% [25.5 km/h], <1% of time on ice) during gameplay. However, 26% to 35% of accelerations recorded during the 4 games were ≥90% of linear sprint acceleration. Conclusions: Although skating speed may be advantageous in specific game situations, our results suggest that players spend little time at near-maximal speeds while accelerating frequently during games. This warrants further investigation of direction changes, skating transitions, repeated sprints, and other determinant variables potentially related to on-ice success and the implementation of training strategies to improve repeated acceleration or qualities beyond maximal skating speed.
Countermovement-Jump and Pull-Up Performance Before and After a Swimming Race in Preparatory and Competitive Phases of a Swimming Season
José M. Gonzalez-Rave, Vincenzo Sorgente, Aaron Agudo-Ortega, Víctor Rodrigo-Carranza, Stelios Psycharakis, and Anthony P. Turner
Purpose: Monitoring performance athletes’ training responses can be efficiently completed at competitive events. This study aimed to explore the changes in swimming, countermovement-jump (CMJ), and pull-up (PU) performance following training across a competitive phase, as well as immediately before and after each race. Methods: Fourteen well-trained male sprint/middle-distance swimmers (height 179 [7] cm, mass 70 [8] kg, age 18 [2] y), from 3 regional training groups, completed CMJ and PU tests before and after the national competitions in October and May, when race performance was also assessed. Results: Swimming race performance was significantly improved from before the national competitions in October to after the national competitions in May (1.8% [3.2%], P = .044, d = 0.60, moderate effect). Although there were no significant changes in PU velocity, CMJ performance significantly improved from before the national competitions in October to after the national competitions in May (mean difference 2.29 cm, P = .004, d = 3.52) and showed before-to-after race decreases (mean difference −1.64 cm, P = .04, d = 2.28). Conclusion: Swimming performance and CMJ performance improved as the season progressed, although these improvements were not directly correlated. PU performance did not appear to be sensitive to training or race-induced fatigue, in contrast to CMJ, in this group of male swimmers.
The Quantification of Physical Performance and Internal Training Load in Youth Male Soccer Players During Preseason
Diogo V. Martinho, André Rebelo, Adam Field, Alex S. Ribeiro, Filipa Pereira, Bruno Bizarro, João Ribeiro, Silvano M. Len, Élvio R. Gouveia, and Hugo Sarmento
Purpose: The monitoring of training loads and quantification of physical performance are common practices in youth soccer academies to support coaches in prescribing and programming training for individuals. The interaction between training load and physical performance is unknown during a preseason period in youth soccer players. The current study assessed changes in training load and physical assessments across a 4-week preseason period. The relationship between physical performance and match playing time in youth male soccer players was also investigated. Methods: The training loads of 25 professional youth academy male soccer players were monitored throughout a 4-week preseason period. Assessments of power, agility, speed, and aerobic capacity were undertaken in the first training session. Session ratings of perceived exertion (sRPE) and well-being questionnaires were collected during all training sessions and preseason matches. Playing time during subsequent competitive matches was recorded. Results: T test and 30-m-sprint assessments, conducted on the first day of preseason, were predictors of sRPE throughout preseason (t test χ2/df = 2.895, poor adjustment; 30-m sprint χ2/df = 1.608, good adjustment). YoYo Test performance was related with changes in perceived fatigue (χ2/df = 0.534, very good adjustment). Faster players reported higher values of sRPE, and players with higher aerobic capacity reported higher levels of fatigue across preseason. Well-being, perceived fatigue and soreness, and sRPE decreased across preseason. Greater match durations were related to higher levels of fatigue during preseason (P < .05). Conclusion: The current study highlights the relationship between training load, physical assessments, and playing time. Coaches and practitioners can use physical test data at the start of preseason as an indication of players that report higher sRPE, perceived fatigue, and reduced well-being across preseason, supporting decisions around individualized training prescriptions.
Volume 19 (2024): Issue 3 (Mar 2024)
Effects of a 6-Week Repeated-Sprint Training With Voluntary Hypoventilation at Low and High Lung Volume on Repeated-Sprint Ability in Female Soccer Players
Mounir Ait Ali Braham, Youva Ouchen, and Xavier Woorons
Purpose: To investigate the effects of repeated-sprint training with voluntary hypoventilation at low (RSH-VHL) and high (RS-VHH) lung volume on repeated-sprint ability (RSA) in female athletes. Methods: Over a 6-week period, 24 female soccer players completed 12 sessions of repeated 30-m running sprints with end-expiratory breath holding (RSH-VHL, n = 8), end-inspiratory breath holding (RS-VHH, n = 8), or unrestricted breathing (RS-URB, n = 8). Before and after training, a running RSA test consisting of performing 30-m all-out sprints until exhaustion was implemented. Results: From before to after training, the number of sprints completed during the RSA test was increased in both RSH-VHL (19.3 [0.9] vs 22.6 [0.9]; P < .01) and RS-VHH (19.3 [1.5] vs 20.5 [1.7]; P < .01) but not in RS-URB (19.4 [1.3] vs 19.5 [1.7]; P = .67). The mean velocity and the percentage decrement score calculated over sprints 1 to 17 were, respectively, higher (82.2% [1.8%] vs 84.6% [2.1%] of maximal velocity) and lower (23.7% [3.1%] vs 19.4% [3.2%]) in RSH-VHL (P < .01), whereas they remained unchanged in RS-VHH and RS-URB. The mean arterial oxygen saturation recorded during training at the end of the sprints was lower in RSH-VHL (92.1% [0.4%]) than in RS-VHH (97.3% [0.1%]) and RS-URB (97.8% [0.1%]). Conclusions: This study shows that female athletes can benefit from the RSH-VHL intervention to improve RSA. The performance gains may have been limited by the short sprinting distance with end-expiratory breath holding, which provoked only moderate hypoxemia. The increase in the number of sprints in RS-VHH seems to show that factors other than hypoxia may have played a role in RSA improvement.
Sequential Mapping of Game Patterns in Men and Women Professional Padel Players
Rafael Conde-Ripoll, Diego Muñoz, Adrián Escudero-Tena, and Javier Courel-Ibáñez
Purpose: This study analyzed the sequences of actions in professional men and women padel players to identify common game patterns. Methods: The sample comprised 17,557 stroke-by-stroke actions (N = 1640 rallies) of the championship World Padel Tour. Multistep Markov chains were used to calculate the conditional probabilities of occurrence of actions during the rally. Results: Results revealed that men’s and women’s padel is mainly defined by 36 patterns constituting 55% and 63% of all actions in the game, respectively, with the 10 most common sequences accounting for 42% to 45% of the game. There were recurrent technical–tactical actions with specific offensive and defensive functions that were constantly reiterated during the rallies. In men, the use of smash, volley, bandeja, direct, back wall, back-wall lobs, and direct lobs followed a foreseeable pattern up to 8 lags, whereas women described predictable interactions for volley, bandeja, direct, lobs, and direct lobs up to 5 lags and for smash and back wall up to 4 lags. Conclusions: The ability of padel players to recall these patterns and enhance their anticipation skills may potentially improve their performance. These findings contribute to a better knowledge of professional padel game dynamics while providing coaches and players with useful information to optimize training and decision-making strategies.
Academic Life: The Good, the Bad, and the Ugly
Robert P. Lamberts and N. Tim Cable
Effect of a Neuromodulation Protocol Associated With Sports Training on the Precision Sports Performance of a Wheelchair Basketball Para-Athlete: A Case Study
Larissa S. Oliveira, Gabriel F. Aleixo, Gustavo J. Luvizutto, and Daniel F.M. Lobato
Objective: To investigate whether transcranial direct-current stimulation (tDCS) optimizes the performance of a wheelchair basketball player on precision tasks. Methods: A right-handed wheelchair basketball player (1.5 points functional class) with myelomeningocele (low lumbar level) participated in this case study. The tDCS neuromodulation protocol was applied throughout 10 interventions of 20 minutes with a current intensity of 2 mA, simultaneously with sport-specific training, 3 times a week for 4 weeks. Anodic stimulation was performed on the right cerebellar hemisphere (CB2) and cathodic stimulation in the left dorsolateral prefrontal cortex. A control participant was submitted to a sham-tDCS stimulation protocol for the same period. Functional performance was assessed before the intervention and after the 5th and 10th interventions using “pass accuracy,” “free-throw shooting,” and “spot shot” tests. Outcome measures were compared using percentage differences between preintervention, intermediate intervention, and postintervention values. Results: There was a gradual increase in the athlete’s total and average scores in all tests performed, with an overall improvement of 78% between the baseline and final assessments, while the control participant had an overall improvement of 6.5%. Conclusion: The tDCS protocol was effective in improving performance in precision activities in a wheelchair basketball player.
Predicting Soccer Players’ Fitness Status Through a Machine-Learning Approach
Mauro Mandorino, Jo Clubb, and Mathieu Lacome
Purpose: The study had 3 purposes: (1) to develop an index using machine-learning techniques to predict the fitness status of soccer players, (2) to explore the index’s validity and its relationship with a submaximal run test (SMFT), and (3) to analyze the impact of weekly training load on the index and SMFT outcomes. Methods: The study involved 50 players from an Italian professional soccer club. External and internal loads were collected during training sessions. Various machine-learning algorithms were assessed for their ability to predict heart-rate responses during the training drills based on external load data. The fitness index, calculated as the difference between actual and predicted heart rates, was correlated with SMFT outcomes. Results: Random forest regression (mean absolute error = 3.8 [0.05]) outperformed the other machine-learning algorithms (extreme gradient boosting and linear regression). Average speed, minutes from the start of the training session, and the work:rest ratio were identified as the most important features. The fitness index displayed a very large correlation (r = .70) with SMFT outcomes, with the highest result observed during possession games and physical conditioning exercises. The study revealed that heart-rate responses from SMFT and the fitness index could diverge throughout the season, suggesting different aspects of fitness. Conclusions: This study introduces an “invisible monitoring” approach to assess soccer player fitness in the training environment. The developed fitness index, in conjunction with traditional fitness tests, provides a comprehensive understanding of player readiness. This research paves the way for practical applications in soccer, enabling personalized training adjustments and injury prevention.