Background: Recent work has demonstrated that low back pain is a common complaint following low-speed collisions. Despite frequent pain reporting, no studies involving human volunteers have been completed to examine the exposures in the lumbar spine during low-speed rear impact collisions. Methods: Twenty-four participants were recruited and a custom-built crash sled simulated rear impact collisions, with a change in velocity of 8 km/h. Randomized collisions were completed with and without lumbar support. Inverse dynamics analyses were conducted, and outputs were used to generate estimates of peak L4/L5 joint compression and shear. Results: Average (SD) peak L4/L5 compression and shear reaction forces were not significantly different without lumbar support (compression = 498.22 N [178.0 N]; shear = 302.2 N [98.5 N]) compared to with lumbar support (compression = 484.5 N [151.1 N]; shear = 291.3 N [176.8 N]). Lumbar flexion angle at the time of peak shear was 36° (12°) without and 33° (11°) with lumbar support. Conclusion: Overall, the estimated reaction forces were 14% and 30% of existing National Institute of Occupational Safety and Health occupational exposure limits for compression and shear during repeated lifting, respectively. Findings also demonstrate that, during a laboratory collision simulation, lumbar support does not significantly influence the total estimated L4/L5 joint reaction force.
Browse
Characterizing Lumbar Spine Kinematics and Kinetics During Simulated Low-Speed Rear Impact Collisions
Kayla M. Fewster, Jackie D. Zehr, Chad E. Gooyers, Robert J. Parkinson, and Jack P. Callaghan
Lower Limb Extension Power is Associated With Slope Walking Joint Loading Mechanics in Older Adults
Peter B. Thomsen, Jacob W. Aumeier, Chelsey A. Wilbur, Evan G. Oro, Hunter B. Carlson, and Jesse C. Christensen
Fall-related injuries are associated with muscle weakness and common during slope walking in older adults. However, no study has evaluated the relationship between muscle weakness, measured by maximal lower limb extension power, and older adults’ ability to navigate slope walking for a better understanding of fall prevention. Therefore, the purpose of this study was to investigate the association between maximal lower limb extension power and joint mechanics during slope walking. Fifteen healthy older adults were tested. Lower limb extension power was measured using the Leg Extension Power Rig. Kinematic and kinetic analysis was performed during level (0°), incline (10°), and decline (10°) slope walking. Greater maximal lower limb extension power was significantly (p < .050; Cohen’s f 2 > 0.35) associated with multiple kinetic and kinematic joint mechanic variables across stance phase of the gait cycle during level, incline, and decline walking. These findings will allow clinicians to better educate patients and develop interventions focused on fall prevention and improving functional mobility in older adults.
Gait Slip-Induced Fall-Type Assessment Based on Regular Gait Characteristics in Older Adults
Shuaijie Wang, Yi-Chung (Clive) Pai, and Tanvi Bhatt
Older adults could experience split falls or feet-forward falls following an unexpected slip in gait due to different neuromuscular vulnerabilities, and different intervention strategies would be required for each type of faller. Thus, this study aimed to investigate the key factors affecting the fall types based on regular gait pattern. A total of 105 healthy older adults who experienced a laboratory-induced slip and fall were included. Their natural walking trial immediately prior to the novel slip trial was analyzed. To identify the factors related to fall type, gait characteristics and demographic factors were determined using univariate logistic regression, and then stepwise logistic regression was conducted to assess the slip-induced fall type based on these factors. The best fall-type prediction model involves gait speed and recovery foot angular velocity, which could predict 70.5% of feet-forward falls and 86.9% of split falls. Body mass index was also a crucial fall-type prediction with an overall prediction accuracy of 70.5%. Along with gait parameters, 84.1% of feet-forward falls and 78.7% of split falls could be predicted. The findings in this study revealed the determinators related to fall types, which enhances our knowledge of the mechanism associated to slip-induced fall and would be helpful for the development of tailored interventions for slip-induced fall prevention.
Head Impact Kinematics and Brain Deformation in Paired Opposing Youth Football Players
Gabriella M. Milef, Logan E. Miller, Daniella M. DiGuglielmo, Tanner D. Payne, Tanner M. Filben, Jillian E. Urban, and Joel D. Stitzel
Head impact exposure is often quantified using peak resultant kinematics. While kinematics describes the inertial response of the brain to impact, they do not fully capture the dynamic brain response. Strain, a measure of the tissue-level response of the brain, may be a better predictor of injury. In this study, kinematic and strain metrics were compared to contact characteristics in youth football. Players on 2 opposing teams were instrumented with head impact sensors to record impact kinematics. Video was collected to identify contact scenarios involving opposing instrumented players (ie, paired contact scenarios) and code contact characteristics (eg, player role, impact location). A previously validated, high-resolution brain finite element model, the atlas-based brain model, was used to simulate head impacts and calculate strain metrics. Fifty-two paired contact scenarios (n = 105 impacts) were evaluated. Lighter players tended to have greater biomechanical metrics compared to heavier players. Impacts to the top of the helmet were associated with lower strain metrics. Overall, strain was better correlated with rotational kinematics, suggesting these metrics may be better predictors of the tissue-level brain response than linear kinematics. Understanding the effect of contact characteristics on brain strain will inform future efforts to improve sport safety.
Erratum. Shoulder Kinesio Taping Does Not Change Biomechanical Deficits Associated With Scapular Dyskinesis
Shoulder Kinesio Taping Does Not Change Biomechanical Deficits Associated With Scapular Dyskinesis
Sevgi Sevi Yeşilyaprak, Ertuğrul Yüksel, Melike Gizem Kalaycı, Nuri Karabay, and Lori A. Michener
Observable scapular dyskinesis is associated with biomechanical deficits. Preventative interventions aimed at correcting these deficits may aid in preventing the development and resolution of shoulder pain. Our purpose was to investigate the effects of kinesio taping (KT) on common biomechanical deficits associated with scapular dyskinesis and shoulder pain. Participants (n = 51) with observable scapular dyskinesis, and without shoulder pain were randomized to KT, KT-placebo, or a no-treatment control group. Measurements taken before, immediately after taping, and 3 days later included pectoralis minor muscle length, lower trapezius muscle strength, scapular upward rotation angle at 0° to 120° in scapular plane humeral elevation and acromiohumeral distance. There were no changes in scapular upward rotation, lower trapezius strength, and acromiohumeral distance immediately after taping or 3 days later compared to baseline (P > .05). The pectoralis minor increased in length in the KT group on day 3 compared to directly after taping (P = .03), but no difference between groups or interaction between time and group were determined (P > .05). Scapular dyskinesis prevalence did not change over time in any group (P > .05). In people with scapular dyskinesis free from shoulder pain, KT applied to the shoulder cannot be recommended to ameliorate the biomechanical deficits associated with shoulder pain.
Volume 38 (2022): Issue 2 (Apr 2022)
Lead Foot Progression Angle in Baseball Pitchers: Implications to Ball Velocity and Upper-Extremity Joint Moments
Matthew J. Solomito, Andrew D. Cohen, Erin J. Garibay, and Carl W. Nissen
The instant of foot contact is an important transition point during the pitch cycle between the linear portion of the pitch, as a pitcher strides down the mound and the rotational portion of the pitch. Understanding the implications of lead foot angle at foot contact is an essential information needed to assist pitching coaches in their work with individual pitchers. Therefore, the purpose of this study was to determine the association between lead foot progression angle at foot contact and ball velocity, elbow varus moment, and pelvic rotation. Kinematic and kinetic data were collected from 99 collegiate pitchers and analyzed using a random intercept, mixed-effects regression model. Significant associations were found between lead foot progression angle at foot contact and elbow varus moment (P = .004), as well as pelvic rotation throughout the pitching motion (P < .001). The data indicate that increased lead foot internal rotation at foot contact is associated with increases in the elbow varus moment but is not associated with ball velocity. This study provides scientific evidence that the rotational positioning of the lead foot can affect both pelvic motion and upper-extremity joint moments.
Variable Stiffness Shoes for Knee Osteoarthritis: An Evaluation of 3-Dimensional Gait Mechanics and Medial Joint Contact Forces
Ethan Steiner and Katherine A. Boyer
The study aim was to quantify the impact of a commercially available variable stiffness shoe (VSS) on 3-dimensional ankle, knee, and hip mechanics and estimated knee contact forces compared with a control shoe. Fourteen participants (10 females) with knee osteoarthritis completed gait analysis after providing informed consent. Shoe conditions tested were control shoe (New Balance MW411v2) and VSS (Abeo SMART3400). An OpenSim musculoskeletal model with static optimization was used to estimate knee contact forces. There were no differences in joint kinematics or in the knee adduction or flexion moments (P = .06; P = .2). There were increases in the knee internal and external rotation (P = .02; P = .03) and hip adduction and internal rotation moments for VSS versus control (P = .03; P = .02). The estimated contact forces were not different between shoes (total P = .3, medial P = .1, and lateral P = .8), but contact force changes were correlated with changes in the knee adduction moment (medial r 2 = .61; P < .007). High variability in knee flexion moment changes and increases in the internal rotation moment combined with small decreases in the knee adduction moment did not lead to decreases in estimated contact forces. These results suggest that evaluation of VSS using only the knee adduction moment may not adequately capture its impact on osteoarthritis.
Can Increased Locomotor Task Difficulty Differentiate Knee Muscle Forces After Anterior Cruciate Ligament Reconstruction?
Megan J. Schroeder, Samuel A. Acuña, Chandramouli Krishnan, and Yasin Y. Dhaher
Changes in knee mechanics following anterior cruciate ligament (ACL) reconstruction are known to be magnified during more difficult locomotor tasks, such as when descending stairs. However, it is unclear if increased task difficulty could distinguish differences in forces generated by the muscles surrounding the knee. This study examined how knee muscle forces differ between individuals with ACL reconstruction with different graft types (hamstring tendon and patellar tendon autograft) and “healthy” controls when performing tasks with increasing difficulty. Dynamic simulations were used to identify knee muscle forces in 15 participants when walking overground and descending stairs. The analysis was restricted to the stance phase (foot contact through toe-off), yielding 162 separate simulations of locomotion in increasing difficulty: overground walking, step-to-floor stair descent, and step-to-step stair descent. Results indicated that knee muscle forces were significantly reduced after ACL reconstruction, and stair descent tasks better discriminated changes in the quadriceps and gastrocnemii muscle forces in the reconstructed knees. Changes in quadriceps forces after a patellar tendon graft and changes in gastrocnemii forces after a hamstring tendon graft were only revealed during stair descent. These results emphasize the importance of incorporating sufficiently difficult tasks to detect residual deficits in muscle forces after ACL reconstruction.