Browse

You are looking at 151 - 160 of 8,822 items for :

  • Athletic Training, Therapy, and Rehabilitation x
  • Refine by Access: All Content x
Clear All
Restricted access

Chloe McKay, Johanna M Hoch, and Deirdre Dlugonski

Clinical Scenario: Physical inactivity among adults is prevalent. Physical literacy is a potential modifiable factor that, if targeted effectively, may increase physical activity and decrease the risk of health conditions that are associated with physical inactivity. Clinical Question: Are there effective intervention strategies available to improve physical literacy in adults? Summary of Key Findings: Two nonrandomized experimental studies were included. Both studies assessed changes in physical literacy before and after a physical literacy intervention using two different sets of physical literacy outcome measures. Clinical Bottom Line: There is currently Level 2, limited quality, patient-oriented evidence that indicates that physical literacy can be improved in an adult population. The creation of a valid and reliable physical literacy outcome measure for adults is a necessary next step to enhance knowledge about physical literacy among adults. Future research should use a randomized control trial design to test the efficacy of physical literacy interventions with valid and reliable outcome measures. Strength of Recommendation: There is Level 2, limited quality, patient-oriented evidence for physical literacy interventions among adults. Due to the limited number of, and lack of consistency between studies, the authors did not make a formal grade recommendation.

Restricted access

Iva Obrusnikova, Albert R. Cavalier, Richard R. Suminski, Ashleigh E. Blair, Cora J. Firkin, and Ashley M. Steinbrecher

Adults with an intellectual disability have significantly lower levels of fitness compared with the general population. This study examined the effects of a 13-week theoretically guided, community-based, multicomponent resistance training intervention, resistance training for empowerment, on muscular strength and independent functional performance in 24 adults with an intellectual disability, aged 18–44 years. Twelve participants were randomly allocated to an experimental group and 12 to an active control group. An analysis of covariance revealed that the experimental group had significantly greater increases (p < .05) on the chest press and leg press one-repetition maximum tests and the 6-min walk test from the baseline to postintervention compared with the control group. The experimental group correctly and independently performed a significantly greater number of steps of resistance training exercise tasks than the control group. Marginal significance and large effect sizes were found for the prone plank test and the stair climb test. The resistance training for empowerment was effective in promoting muscular strength and independent functional performance among adults with an intellectual disability.

Open access

Jennifer L. Ostrowski, Alexa Beaumont, and Emily Dochterman

Clinical Scenario: Pathologies of the long head of the biceps brachii (LHB) tendon are a source of shoulder pain in many people. It is important to have a reliable assessment of the LHB tendon to make an accurate diagnosis and provide the correct treatment or referral if necessary. Shoulder ultrasound is very accurate in the diagnosis of rotator cuff tears. However, its ability to detect pathologies of the LHB tendon is still unclear. Clinical Question: In patients with shoulder pain, can musculoskeletal ultrasound accurately diagnose LHB tendon pathologies? Summary of Key Findings: Four high-quality cohort studies met inclusion criteria and were included in the critical appraisal. The STrengthening the Reporting of OBservational studies in Epidemiology checklist was used to score the articles on methodology and consistency. Three studies evaluated accuracy in diagnosis of full-thickness tears and found high sensitivity (SN) and specificity (SP). Three studies evaluated accuracy in diagnosis of partial-thickness tears and found low SN and negative predictive value, but high SP and positive predictive value. Two studies evaluated tendon subluxation/dislocation and found high SN and SP. Two studies evaluated tendinitis and found moderate SN and high SP. Clinical Bottom Line: There is moderate to strong evidence to support the use of musculoskeletal ultrasound in diagnosis of LHB tendon pathology. Strength of Recommendation: There is grade B evidence that musculoskeletal ultrasound can accurately diagnose full-thickness tears and tendon subluxation/dislocation; can rule in partial-thickness tears (based on SP and positive predictive value), but not rule out partial-thickness tears; and can rule in tendinitis (based on SP and positive predictive value), but not rule out tendinitis.

Restricted access

Kentaro Kodama, Hideo Yamagiwa, and Kazuhiro Yasuda

As previous studies have suggested that bimanual coordination is important for slacklining, the authors questioned whether this important skill plays a role in the performance of a fundamental task of slacklining. To address this question, the authors compared single-leg standing on the slackline between novices and experts in terms of bimanual coordination dynamics within a dynamical systems framework using relative phase and recurrence quantification analysis measures. Five novices and five experts participated in the experiment. Participants were required to perform single-leg standing on a slackline. To collect motion data while slacklining, the authors used a 3D motion capture system and obtained time series data on the wrist position of both hands. The authors compared bimanual coordination dynamics between novices and experts. Although this preliminary study was limited in its sample size, the results suggest that experts tend to show a more antiphase coordination pattern than novices do and that they can more sustainably coordinate their hands compared with novices in terms of temporal structure in diagonal-related recurrence measures (i.e., maxline, mean line, and percentage determinism).

Restricted access

Geneviève N. Olivier, Christopher S. Walter, Serene S. Paul, Leland E. Dibble, and Sydney Y. Schaefer

Motor performance is classically described as improving nonlinearly with practice, demonstrating rapid improvements early in practice with stabilization later, which is commonly modeled by exponential decay functions. However, retrospective analyses of our previously collected data challenge this theoretical model of motor skill acquisition, suggesting that a majority of individual learners actually demonstrate patterns of motor improvement different from this classical model. A convenience sample of young adults, older adults, and people with Parkinson disease trained on the same functional upper-extremity task. When fitting three-parameter exponential decay functions to individual participant data, the authors found that only 13.3% of young adults, 40.9% of older adults, and 66.7% of adults with Parkinson disease demonstrated this “classical” skill acquisition pattern. Thus, the three-parameter exponential decay pattern may not well-represent individuals’ skill acquisition of complex motor tasks; instead, more individualized analysis methods may be warranted for advancing a theoretical understanding of motor skill acquisition.

Restricted access

Samar Ezzina, Clément Roume, Simon Pla, Hubert Blain, and Didier Delignières

The analysis of stride series revealed a loss of complexity in older people, which correlated with the falling propensity. A recent experiment evidenced an increase of walking complexity in older participants when they walked in close synchrony with a younger companion. Moreover, a prolonged experience of such synchronized walking yielded a persistent restoration of complexity. This result, however, was obtained with a unique healthy partner, and it could be related to a particular partner’s behavior. The authors’ aim was to replicate this important finding using a different healthy partner and to compare the results to those previously obtained. The authors successfully replicated the previous results: synchronization yielded an attraction of participants’ complexity toward that of their partner and a restoration of complexity that persisted in two posttests, 2 and 6 weeks after the end of the training sessions. This study shows that this complexity restoration protocol can be applied successfully with another partner, and allows us to conclude that it can be generalized.

Restricted access

J.D. DeFreese, Samuel R. Walton, Avinash Chandran, and Zachary Y. Kerr

The COVID-19 pandemic has resulted in changes to the structure of sport and the experiences of athletes. In this commentary, we consider how these changes, including schedule disruptions and the early termination of careers, have contributed to a reconsideration of how athlete transition should be defined, examined, and intervened upon. We outline our rationale for this proposed reconfiguration, including implications for researchers and practitioners working with athletes during the COVID-19 pandemic and beyond. For researchers, we recommend updating the transition definition, reconsidering the measurement of salient transition-related variables, and utilizing study designs/methods that best facilitate this work. For practitioners, we recommend considering the dynamic nature of transition within holistic athlete care, building momentum on mental health destigmatization achieved during the pandemic, athlete transition education, and clinician advocacy for transition-related resources for athletes. Ultimately, we hope this work will spark continued innovations in athlete transition research and practice moving forward.

Restricted access

Yetsa A. Tuakli-Wosornu, Xiang Li, Kimberly E. Ona Ayala, Yinfei Wu, Michael Amick, and David B. Frumberg

It is known that high-performance sprinters with unilateral and bilateral prosthetic lower limbs run at different speeds using different spatiotemporal strategies. Historically, these athletes still competed together in the same races, but 2018 classification rule revisions saw the separation of these two groups. This study sought to compare Paralympic sprint performance between all-comer (i.e., transfemoral and transtibial) unilateral and bilateral amputee sprinters using a large athlete sample. A retrospective analysis of race speed among Paralympic sprinters between 1996 and 2016 was conducted. In total, 584 published race results from 161 sprinters revealed that unilateral and bilateral lower-extremity amputee sprinters had significantly different race speeds in all three race finals (100 m, p value <.001; 200 m, <.001; 400 m, <.001). All-comer bilateral amputee runners ran faster than their unilateral counterparts; performance differences increased with race distance. These data support current classification criteria in amputee sprinting, which may create more equal competitive fields in the future.

Restricted access

Mu Qiao

Although the dynamics of center of mass can be accounted for by a spring-mass model during hopping, less is known about how each leg joint (ie, hip, knee, and ankle) contributes to center of mass dynamics. This work investigated the function of individual leg joints when hopping unilaterally and vertically at 4 frequencies (ie, 1.6, 2.0, 2.4, and 2.8 Hz). The hypotheses are (1) all leg joints maintain the function as torsional springs and increase their stiffness when hopping faster and (2) leg joints are controlled to maintain the mechanical load in the joints or vertical peak accelerations at different body locations when hopping at different frequencies. Results showed that all leg joints behaved as torsional springs during low-frequency hopping (ie, 1.6 Hz). As hopping frequency increased, leg joints changed their functions differently; that is, the hip and knee shifted to strut, and the ankle remained as spring. When hopping fast, the body’s total mechanical energy decreased, and the ankle increased the amount of energy storage and return from 50% to 62%. Leg joints did not maintain a constant load at the joints or vertical peak accelerations at different body locations when hopping at different frequencies.

Restricted access

Nathálya Gardênia de Holanda Marinho Nogueira, Bárbara de Paula Ferreira, Fernanda Veruska Narciso, Juliana Otoni Parma, Sara Edith Souza de Assis Leão, Guilherme Menezes Lage, and Lidiane Aparecida Fernandes

This study investigated the influence of chronotype on motor behavior in a manual dexterity task performed at different times of the day. Sixteen healthy adults of each chronotype (morning, evening, and neither), as measured by the Morningness–Eveningness Questionnaire, practiced both conditions of the Grooved Pegboard Test either in the morning or in the afternoon to early evening. The “neither” chronotype (65.12 ± 7.46) was outperformed (ps ≤ .03) by both the morning (56.09 ± 7.21) and evening (58.94 ± 7.53) chronotypes when the task had higher cognitive and motor demand but was not outperformed in the task with lower demand (morning = 18.46 ± 2.11; evening = 19.34 ± 2.79; neither = 21.47 ± 2.54; p > .05). No difference between the morning and evening chronotypes was found at the different times of the day (ps > .05), suggesting that a manual dexterity task is not sufficiently demanding to be influenced by chronotype.