You are looking at 151 - 160 of 4,589 items for :

  • Athletic Training, Therapy, and Rehabilitation x
  • Sport and Exercise Science/Kinesiology x
  • All content x
Clear All
Restricted access

Desiree Camara Miraldo, Renato Naville Watanabe, and Marcos Duarte

This study describes an open data set of inertial, magnetic, foot–ground contact, and electromyographic signals from wearable sensors during walking at different speeds. These data were acquired from 22 healthy adults using wearable sensors and walking at self-selected comfortable, fast and slow speeds, and standing still. All data are publicly available in the Internet ( In total, there are data of 9,661 gait strides. This data set also contains files with the instants of the gait events identified using the foot–ground contact sensors and notebooks exemplifying how to access and visualize the data. This data set gives the opportunity to all interested researchers to work with such data, for example, making tests of algorithms for gait event estimation against a common reference, possible.

Restricted access

James Scales, Jamie M. O’Driscoll, Damian Coleman, Dimitrios Giannoglou, Ioannis Gkougkoulis, Ilias Ntontis, Chrisoula Zisopoulou, and Mathew Brown

The primary purpose of this study was to examine lateral deviations in center of pressure as a result of an extreme-duration load carriage task, with particular focus on heel contact. A total of 20 (n = 17 males and n = 3 females) soldiers from a special operation forces unit (body mass 80.72 [21.49] kg, stature 178.25 [8.75] cm, age 26 [9] y) underwent gait plantar pressure assessment and vertical jump testing before and after a 43-km load carriage event (duration 817.02 [32.66] min) carrying a total external load of 29.80 (1.05) kg. Vertical jump height decreased by 18.62% (16.85%) from 0.30 (0.08) to 0.24 (0.07) m, P < .001. Loading peak and midstance force minimum were significantly increased after load carriage (2.59 [0.51] vs 2.81 [0.61] body weight, P = .035, Glass delta = 0.44 and 1.28 [0.40] vs 1.46 [0.41] body weight, P = .015, Glass delta = 0.45, respectively) and increases in lateral center of pressure displacement were observed as a result of the load carriage task 14.64 (3.62) to 16.97 (3.94) mm, P < .029. In conclusion, load carriage instigated a decrease in neuromuscular function alongside increases in ground reaction forces associated with injury risk and center of pressure changes associated with ankle sprain risk. Practitioners should consider that possible reductions in ankle stability remain once load carriage has been completed, suggesting soldiers are still at increased risk of injury even once the load has been removed.

Restricted access

Walaa M. Elsais, Stephen J. Preece, Richard K. Jones, and Lee Herrington

The superficial hip adductor muscles are situated in close proximity to each other. Therefore, relative movement between the overlying skin and the muscle belly could lead to a shift in the position of surface electromyography (EMG) electrodes and contamination of EMG signals with activity from neighboring muscles. The aim of this study was to explore whether hip movements or isometric contraction could lead to relative movement between the overlying skin and 3 adductor muscles: adductor magnus, adductor longus, and adductor gracilis. The authors also sought to investigate isometric torque–EMG relationships for the 3 adductor muscles. Ultrasound measurement showed that EMG electrodes maintained a position which was at least 5 mm within the muscle boundary across a range of hip flexion–extension angles and across different contraction levels. The authors also observed a linear relationship between torque and EMG amplitude. This is the first study to use ultrasound to track the relative motion between skin and muscle and provides new insight into electrode positioning. The findings provide confidence that ultrasound-based positioning of EMG electrodes can be used to derive meaningful information on output from the adductor muscles and constitute a step toward recognized guidelines for surface EMG measurement of the adductors.

Restricted access

Margaret A. Finley, Elizabeth Euiler, Shivayogi V. Hiremath, and Joseph Sarver

Humeral elevation is a critical motion for individuals who use a manual wheelchair given that, in a typical day, wheelchair users reach overhead 5 times more often than able-bodied controls. Kinematic analyses in individuals with chronic spinal cord injury (SCI) have focused on weight-bearing tasks rather than overhead reaching. This technical report presents shoulder movement coordination during overhead reaching in individuals with newly acquired SCI. Eight volunteers with acute SCI and 8 matched, uninjured controls participated. Three-dimensional kinematics were collected during seated, humeral elevation. Scapular and thoracic rotations during humeral elevation were averaged across repetitions. The linear relationship of scapular upward rotation to humeral elevation provided movement coordination analysis. Maximal elevation was reduced in SCI with increased thoracic kyphosis. Medium to large effect sizes were found at each elevation angle, with reduced scapular external rotation, posterior tilt, and increased thoracic kyphosis for those with SCI. The linear relationship occurred later and within a significantly (P = .02) smaller range of humeral elevation in SCI. Altered movement coordination, including a diminished linear association of scapular upward rotation and humeral elevation (scapulohumeral rhythm), is found with reduced maximal elevation and increased thoracic kyphosis during overhead reaching tasks in those with acute SCI.

Restricted access

John J. McMahon, Jason P. Lake, Nicholas J. Ripley, and Paul Comfort

The purpose of this study was to determine the usefulness of calculating jump take-off momentum in rugby league (RL) by exploring its relationship with sprint momentum, due to the latter being an important attribute of this sport. Twenty-five male RL players performed 3 maximal-effort countermovement jumps on a force platform and 3 maximal effort 20-m sprints (with split times recorded). Jump take-off momentum and sprint momentum (between 0 and 5, 5 and 10, and 10 and 20 m) were calculated (mass multiplied by velocity) and their relationship determined. There was a very large positive relationship between both jump take-off and 0- to 5-m sprint momentum (r = .781, P < .001) and jump take-off and 5- to 10-m sprint momentum (r = .878, P < .001). There was a nearly perfect positive relationship between jump take-off and 10- to 20-m sprint momentum (r = .920, P < .001). Jump take-off and sprint momentum demonstrated good–excellent reliability and very large–nearly perfect associations (61%–85% common variance) in an RL cohort, enabling prediction equations to be created. Thus, it may be practically useful to calculate jump take-off momentum as part of routine countermovement jump testing of RL players and other collision-sport athletes to enable the indirect monitoring of sprint momentum.

Restricted access

Kathryn A. Coniglio and Edward A. Selby

Pathological exercise behavior is pervasive in eating disorder psychopathology, yet minimal treatment guidance exists for extinguishing it as little is known about how to differentiate pathological from healthy exercise. The purpose of this study was to characterize pathological exercise in terms of motivation to increase the specificity with which both pathological and healthy exercise is described and to inform treatment interventions. Latent profile analysis characterized homogenous groups based on exercise motivation in two samples: college women (n = 200) and women with eating psychopathology (n = 211). These profiles were compared on levels of eating and general psychopathology and emotion dysregulation. Three profiles emerged describing sedentary, pathological exercise, and athlete groups in the first sample, and five profiles describing neutral, sedentary, weight loss, athlete, and pathological exercise groups emerged in the second sample. Findings indicate that motivation style is salient in defining pathological exercise and may, therefore, be a clinically useful treatment target.

Restricted access

Daniel W. Sample, Tanner A. Thorsen, Joshua T. Weinhandl, Kelley A. Strohacker, and Songning Zhang

The purpose of this study was to investigate effects of preferred step width and increased step width modification on knee biomechanics of obese and healthy-weight participants during incline and decline walking. Seven healthy-weight participants and 6 participants who are obese (body mass index ≥ 30) performed 5 walking trials on level ground and a 10° inclined and declined instrumented ramp system at both preferred and wide step-widths. A 2 × 2 (step-width × group) mixed-model analysis of variance was used to examine selected variables. There were significant increases in step-width between the preferred and wide step-width conditions for all 3 walking conditions (all P < .001). An interaction was found for peak knee extension moment (P = .048) and internal knee abduction moment (KAM) (P = .025) in uphill walking. During downhill walking, there were no interaction effects. As step-width increased, KAM was reduced (P = .007). In level walking, there were no interaction effects for peak medial ground reaction force and KAM (P = .007). There was a step-width main effect for KAM (P = .007). As step-width increased, peak medial ground reaction force and peak knee extension moment increased, while KAM decreased for both healthy weight and individuals who are obese. The results suggest that increasing step-width may be a useful strategy for reducing KAM in healthy and young populations.

Restricted access

Kevin G. Aubol, Jillian L. Hawkins, and Clare E. Milner

Measurements of tibial acceleration during running must be reliable to ensure valid results and reduce errors. The purpose of this study was to determine the reliability and minimal detectable difference (MDD) of peak axial and peak resultant tibial acceleration during overground and treadmill running. The authors also compared reliability and MDDs when peak tibial accelerations were determined by averaging 5 or 10 trials. Tibial acceleration was measured during overground and treadmill running of 19 participants using a lightweight accelerometer mounted to the tibia. Peak axial and peak resultant tibial accelerations were determined for each trial. Intraclass correlation coefficients determined within-session reliability, and MDDs were also calculated. Within-session reliability was excellent for all conditions (intraclass correlation coefficients  = .95–.99). The MDDs ranged from 0.6 to 1.4 g for peak axial acceleration and from 1.6 to 2.0 g for peak resultant acceleration and were lowest for peak axial tibial acceleration during overground running. Averaging 10 trials did not improve reliability compared to averaging 5 trials but did result in small reductions in MDDs. For peak axial tibial acceleration only, lower MDDs indicate that overground running may be the better option for detecting small differences.

Restricted access

Nadège Tebbache and Alain Hamaoui

The sit-to-stand transfer can be separated into a postural phase (trunk flexion) and a focal phase (whole-body extension). The aim of this study was to analyze the as yet little known whole-body muscular activity characterizing each phase of this task and its variations with backrest inclination and execution speed. Fifteen muscles of the trunk and lower limbs of 10 participants were investigated using surface EMG. Results showed that backrest-induced modifications were mostly confined to the postural phase: reclining the backrest increased its duration and the activity level of the sternocleidomastoideus, the rectus and obliquus externus abdominis, and the semitendinosus. Speed-induced variations were also predominant during the postural phase, which was shortened with an increased activity of most muscles at maximal speed.