Browse

You are looking at 161 - 170 of 1,863 items for :

  • Physical Education and Coaching x
  • International Journal of Sport Nutrition and Exercise Metabolism x
  • Refine by Access: All Content x
Clear All
Open access

Sustained Exposure to High Carbohydrate Availability Does Not Influence Iron-Regulatory Responses in Elite Endurance Athletes

Alannah K.A. McKay, Peter Peeling, David B. Pyne, Nicolin Tee, Marijke Welveart, Ida A. Heikura, Avish P. Sharma, Jamie Whitfield, Megan L. Ross, Rachel P.L. van Swelm, Coby M. Laarakkers, and Louise M. Burke

This study implemented a 2-week high carbohydrate (CHO) diet intended to maximize CHO oxidation rates and examined the iron-regulatory response to a 26-km race walking effort. Twenty international-level, male race walkers were assigned to either a novel high CHO diet (MAX = 10 g/kg body mass CHO daily) inclusive of gut-training strategies, or a moderate CHO control diet (CON = 6 g/kg body mass CHO daily) for a 2-week training period. The athletes completed a 26-km race walking test protocol before and after the dietary intervention. Venous blood samples were collected pre-, post-, and 3 hr postexercise and measured for serum ferritin, interleukin-6, and hepcidin-25 concentrations. Similar decreases in serum ferritin (17–23%) occurred postintervention in MAX and CON. At the baseline, CON had a greater postexercise increase in interleukin-6 levels after 26 km of walking (20.1-fold, 95% CI [9.2, 35.7]) compared with MAX (10.2-fold, 95% CI [3.7, 18.7]). A similar finding was evident for hepcidin levels 3 hr postexercise (CON = 10.8-fold, 95% CI [4.8, 21.2]; MAX = 8.8-fold, 95% CI [3.9, 16.4]). Postintervention, there were no substantial differences in the interleukin-6 response (CON = 13.6-fold, 95% CI [9.2, 20.5]; MAX = 11.2-fold, 95% CI [6.5, 21.3]) or hepcidin levels (CON = 7.1-fold, 95% CI [2.1, 15.4]; MAX = 6.3-fold, 95% CI [1.8, 14.6]) between the dietary groups. Higher resting serum ferritin (p = .004) and hotter trial ambient temperatures (p = .014) were associated with greater hepcidin levels 3 hr postexercise. Very high CHO diets employed by endurance athletes to increase CHO oxidation have little impact on iron regulation in elite athletes. It appears that variations in serum ferritin concentration and ambient temperature, rather than dietary CHO, are associated with increased hepcidin concentrations 3 hr postexercise.

Open access

Acknowledgments

Restricted access

Sequential Submaximal Training in Elite Male Rowers Does Not Result in Amplified Increases in Interleukin-6 or Hepcidin

Nikita C. Fensham, Alannah K.A. McKay, Nicolin Tee, Bronwen Lundy, Bryce Anderson, Aimee Morabito, Megan L.R. Ross, and Louise M. Burke

Previous research investigating single bouts of exercise have identified baseline iron status and circulating concentrations of interleukin-6 (IL-6) as contributors to the magnitude of postexercise hepcidin increase. The current study examined the effects of repeated training bouts in close succession on IL-6 and hepcidin responses. In a randomized, crossover design, 16 elite male rowers completed two trials, a week apart, with either high (1,000 mg) or low (<50 mg) calcium pre-exercise meals. Each trial involved two, submaximal 90-min rowing ergometer sessions, 2.5 hr apart, with venous blood sampled at baseline; pre-exercise; and 0, 1, 2, and 3 hr after each session. Peak elevations in IL-6 (approximately 7.5-fold, p < .0001) and hepcidin (approximately threefold, p < .0001) concentrations relative to baseline were seen at 2 and 3 hr after the first session, respectively. Following the second session, concentrations of both IL-6 and hepcidin remained elevated above baseline, exhibiting a plateau rather than an additive increase (2 hr post first session vs. 2 hr post second session, p = 1.00). Pre-exercise calcium resulted in a slightly greater elevation in hepcidin across all time points compared with control (p = .0005); however, no effect on IL-6 was evident (p = .27). Performing multiple submaximal training sessions in close succession with adequate nutritional support does not result in an amplified increase in IL-6 or hepcidin concentrations following the second session in male elite rowers. Although effects of calcium intake require further investigation, athletes should continue to prioritize iron consumption around morning exercise prior to exercise-induced hepcidin elevations to maximize absorption.

Open access

Erratum: Rogers et al. (2021)

Restricted access

Evening Whey Protein Intake, Rich in Tryptophan, and Sleep in Elite Male Australian Rules Football Players on Training and Nontraining Days

Cassandra Ferguson, Brad Aisbett, Michele Lastella, Spencer Roberts, and Dominique Condo

Objectives: To investigate the effect of evening whey protein supplementation, rich in tryptophan, on sleep in elite male Australian Rules Football players. Design: Double-blinded, counterbalanced, randomized, cross-over study. Methods: Sleep was assessed using wrist activity monitors and sleep diaries in 15 elite male Australian Football League players on two training and nontraining days following evening consumption of an isocaloric whey protein supplement or placebo in preseason. A 5-day preintervention period was implemented to determine habitual dietary intake and baseline sleep measures. These habitual data were used to inform the daily dietary intake and timing of ingestion of the evening whey protein supplement or placebo on the intervention days. The whey protein supplement or placebo was consumed 3 hr prior to habitual bedtime. Results: Separate one-way repeated-measures analyses of covariance revealed no differences between the whey protein supplement and the placebo on sleep duration, sleep onset latency, sleep efficiency, or wake after sleep onset on either training or nontraining days. Conclusions: Evening whey protein supplementation, rich in tryptophan, does not improve acute sleep duration or quality in elite male Australian Football League players. However, elite athletes may be able to ingest a high protein/energy intake close to bedtime without impairing sleep, which is important for athlete recovery. Future research should investigate the effect of evening protein intake, high in tryptophan, on sleep duration and quality, including sleep staging during periods of restricted sleep and in poor-sleeping athletes.

Open access

The Hyperhydration Potential of Sodium Bicarbonate and Sodium Citrate

Jason C. Siegler, Amelia J. Carr, William T. Jardine, Lilia Convit, Rebecca Cross, Dale Chapman, Louise M. Burke, and Megan Ross

Buffering agents have not been comprehensively profiled in terms of their capacity to influence water retention prior to exercise. The purpose of this investigation was to profile the fluid retention characteristics of sodium bicarbonate (BIC) and sodium citrate (CIT) to determine the efficacy of these buffering mediums as hyperhydrating agents. Nineteen volunteers (13 males and six females; age = 28.3 ± 4.9 years) completed three trials (randomized and cross-over design). For each trial, a baseline measurement of body mass, capillary blood, and urine was collected prior to ingestion of their respective condition (control condition [CON] = 25 ml/kg artificially sweetened water; BIC condition = CON + 7.5 g/L of sodium in the form of BIC; CIT condition = CON + 7.5 g/L of sodium in the form of CIT). The fluid loads were consumed in four equal aliquots (0, 20, 40 and 60 min; fluid intake was 1.972 ± 361 ml [CON]; 1.977 ± 360 ml [BIC]; 1.953 ± 352 ml [CIT]). Samples were recorded at 20 (body mass and urine) and 60 min (blood) intervals for 180 min. Blood buffering capacity (HCO3 ) was elevated (p < .001) in both BIC (32.1 ± 2.2 mmol/L) and CIT (28.9 ± 3.8 mmol/L) at 180 min compared with CON (25.1 ± 1.8 mmol/L). Plasma volume expansion was greater (p < .001) in both BIC (8.1 ± 1.3%) and CIT (5.9 ± 1.8%) compared with CON (−1.1 ± 1.4%); whereas, total urine production was lower in BIC and CIT at 180 min (BIC vs. CON, mean difference of 370 ± 85 ml; p < .001; CIT vs. CON, mean difference of 239 ± 102 ml; p = .05). There were no increases observed in body mass (p = .9). Under resting conditions, these data suggest BIC and CIT induce a greater plasma hypervolemic response as compared with water alone.

Restricted access

Impact of Physical Activity Intensity Levels on the Cardiometabolic Risk Status of Children: The Genobox Study

Francisco J. Llorente-Cantarero, Francisco J. Aguilar-Gómez, Gloria Bueno-Lozano, Augusto Anguita-Ruiz, Azahara I. Rupérez, Rocío Vázquez-Cobela, Katherine Flores-Rojas, Concepción M. Aguilera, Luis A. Moreno, Ángel Gil, Rosaura Leis, and Mercedes Gil-Campos

Childhood obesity has been related to metabolic syndrome and low-grade chronic inflammation. This study aimed to evaluate the impact of physical activity intensities and practice on inflammation, endothelial damage, and cardiometabolic risk factors in children. There were 513 participants, aged 6–14 years, recruited for the study. Physical activity was measured by accelerometry, and the children were classified into four groups according to quartiles of moderate to vigorous physical activity (MVPA) practice as very low active, low active, moderate active, and high active. Anthropometric measures, blood pressure, and plasma metabolic and proinflammatory parameters were analyzed. Very low active group presented a worse lipid profile and higher insulin, leptin, adiponectin, resistin, matrix metallopeptidase-9, and tissue plasminogen activator inhibitor-1, while lower levels of tumor necrosis factor-alpha, Type 1 macrophages, and interleukin 8 than high-active children. Regression analyses showed that a higher MVPA practice was associated with lower levels of triacylglycerols (β: −0.118; p = .008), resistin (β: −0.151; p = .005), tPAI (β: −0.105; p = .046), and P-selectin (β: −0.160; p = .006), independently of sex, age, and body mass index (BMI). In contrast, a higher BMI was associated with higher levels of insulin (β: 0.370; p < .001), Homeostasis Model Assessment (β: 0.352; p < .001), triacylglycerols (β: 0.209; p < .001), leptin (β: 0.654; p < .001), tumor necrosis factor-alpha (β: 0.182; p < .001), Type 1macrophages (β: 0.181; p < .001), and tissue plasminogen activator inhibitor (β: 0.240; p < .001), independently of sex, age, and MVPA. A better anthropometric, metabolic, and inflammatory profile was detected in the most active children; however, these differences were partly due to BMI. These results suggest that a higher MVPA practice and a lower BMI in children may lead to a better cardiometabolic status.

Open access

What’s New for Twenty-Two?

James A. Betts

Full access

Collagen and Vitamin C Supplementation Increases Lower Limb Rate of Force Development

Dana M. Lis, Matthew Jordan, Timothy Lipuma, Tayler Smith, Karine Schaal, and Keith Baar

Background: Exercise and vitamin C-enriched collagen supplementation increase collagen synthesis, potentially increasing matrix density, stiffness, and force transfer. Purpose: To determine whether vitamin C-enriched collagen (hydrolyzed collagen [HC] + C) supplementation improves rate of force development (RFD) alongside a strength training program. Methods: Using a double-blinded parallel design, over 3 weeks, healthy male athletes (n = 50, 18–25 years) were randomly assigned to the intervention (HC + C; 20 g HC + 50 mg vitamin C) or placebo (20 g maltodextrin). Supplements were ingested daily 60 min prior to training. Athletes completed the same targeted maximal muscle power training program. Maximal isometric squats, countermovement jumps, and squat jumps were performed on a force plate at the same time each testing day (baseline, Tests 1, 2, and 3) to measure RFD and maximal force development. Mixed-model analysis of variance compared performance variables across the study timeline, whereas tests were used to compare the change between baseline and Test 3. Results: Over 3 weeks, maximal RFD in the HC + C group returned to baseline, whereas the placebo group remained depressed (p = .18). While both groups showed a decrease in RFD through Test 2, only the treatment group recovered RFD to baseline by Test 3 (p = .036). In the HC + C group, change in countermovement jumps eccentric deceleration impulse (p = .008) and eccentric deceleration RFD (p = .04) was improved. A strong trend was observed for lower limb stiffness assessed in the countermovement jumps (p = .08). No difference was observed in maximal force or squat jump parameters. Conclusion: The HC + C supplementation improved RFD in the squat and countermovement jump alongside training.

Restricted access

Combination of Aerobic Training and Cocoa Flavanols as Effective Therapies to Reduce Metabolic and Inflammatory Disruptions in Insulin-Resistant Rats: The Exercise, Cocoa, and Diabetes Study

Bruno P. Melo, Aline C. Zacarias, Joyce C.C. Oliveira, Letícia M. De Souza Cordeiro, Samuel P. Wanner, Mara L. Dos Santos, Gleide F. Avelar, Romain Meeusen, Elsa Heyman, and Danusa D. Soares

We aimed to investigate the combined effects of aerobic exercise (EXE) and cocoa flavanol (COCOA) supplementation on performance, metabolic parameters, and inflammatory and lipid profiles in obese insulin-resistant rats. Therefore, 32 male Wistar rats (230–250 g) were fed a high-fat diet and a fructose-rich beverage for 30 days to induce insulin resistance. Next, the rats were randomized into four groups, orally administered placebo solution or COCOA supplementation (45 mg·kg−1), and either remained sedentary or were subjected to EXE on a treadmill at 60% peak velocity for 30 min, for 8 weeks. Blood samples and peripheral tissues were collected and processed to analyze metabolic and inflammatory parameters, lipid profiles, and morphological parameters. Supplementation with COCOA and EXE improved physical performance and attenuated body mass gain, adipose index, and adipocyte area. When analyzed as individual interventions, supplementation with COCOA and EXE improved glucose intolerance and the lipid profile reduced the concentrations of leptin, glucose, and insulin, and reduced homeostasis assessment index (all effects were p < .001 for both interventions), while ameliorated some inflammatory mediators in examined tissues. In skeletal muscles, both COCOA supplementation and EXE increased the expression of glucose transporter (p < .001 and p < .001), and combined intervention showed additive effects (p < .001 vs. COCOA alone or EXE alone). Thus, combining COCOA with EXE represents an effective nonpharmacological strategy to treat insulin resistance; it could prevent Type 2 diabetes mellitus by improving physical performance, glucose metabolism, neuroendocrine control, and lipid and inflammatory mediators in the liver, pancreas, adipose tissue, and skeletal muscle in obese male insulin-resistant rats.