This study aimed to investigate the effects of caffeine ingestion by chewing gum (GUMCAF) combined with priming exercise on pulmonary oxygen uptake (
Browse
No Combined Effect of Caffeinated Chewing Gum and Priming Exercise on Oxygen Uptake and Muscle Near-Infrared Spectroscopy-Derived Kinetics: A Double-Blind Randomized Crossover Placebo-Controlled Trial in Cyclists
Eduardo Marcel Fernandes Nascimento, Fernando Klitzke Borszcz, Thiago Pereira Ventura, Brunna Cristina Bremer Boaventura, Paulo Cesar do Nascimento Salvador, Luiz Guilherme Antonacci Guglielmo, and Ricardo Dantas de Lucas
Dietary Intake of Branched-Chain Fatty Acids, Metabolic Parameters, High-Sensitivity C-Reactive Protein Levels, and Anthropometric Features Among Elite and Subelite Soccer Players
Rui Zhang, Yuyao Zhang, and Zhe Shao
Background: Several studies have revealed the positive healthy impacts of branched-chain fatty acids (BCFAs). However, most of these studies evaluated the serum BCFAs in humans, or treatment with exogenous BCFAs in animal or in-vitro models and the health impacts of dietary BCFAs have not yet been studied. Due to positive effects of BCFAs in sport, in the current study, we aimed to investigate the association between dietary BCFAs and metabolic and inflammatory parameters among elite and subelite soccer players. Methods: A cross-sectional study was carried out among 335 elite and subelite soccer players (196 male), aged between 20 and 45 years old. Soccer players were enrolled from 32 teams under the directive of The Chinese Football Association. Demographic, anthropometric, and dietary assessments were performed and laboratory measurement including serum lipids, glycemic markers, and high-sensitivity C-reactive protein was measured. Results: Those with the highest dietary BCFAs consumption had higher appetite (p = .009). Also, high consumption of dietary BCFAs was associated with lower diastolic blood pressure (odds ratio: 0.958; confidence interval: 0.918–0.999; p = .046) and low high-sensitivity C-reactive protein concentrations in the third tertile of dietary BCFAs (odds ratio: 0.431; confidence interval: 0.300–0.618; p < .001). No other association between biochemical variables and dietary BCFAs was found. Conclusion: As shown in the current study, higher dietary BCFAs consumption was associated with lower diastolic blood pressure and inflammation. Due to very limited number of studies, further studies are needed to have a better perspective of these associations and their underlying mechanisms.
Short-Term Cocoa Supplementation Influences Microbiota Composition and Serum Markers of Lipid Metabolism in Elite Male Soccer Players
Laura Mancin, Ian Rollo, Davide Golzato, Nicola Segata, Cristian Petri, Luca Pengue, Luca Vergani, Nicolò Cassone, Alessandro Corsini, Joao Felipe Mota, Stefania Sut, Stefano Dall’Acqua, and Antonio Paoli
Objectives: Dietary strategies to improve arachidonic acid:eicosapentaenoic acid (AA:EPA) ratios are of interest due to potential reductions in inflammation and oxidative stress following exercise. The aim of this study was to investigate the impact of a novel dietary intervention, that is, the ingestion of 30 g of dark chocolate, on blood lipid profiles and gut microbiota composition in elite male soccer players. Methods: Professional male soccer players were randomly assigned to the experimental group (DC) provided with 30 g of dark chocolate or to the control group (WC), provided with 30 g of white chocolate, for 30 days. Before and after intervention, blood, fecal sample, and anthropometry data were collected. For each outcome, two-way repeated-measure analysis of variance was used to identify differences between baseline and endpoint (Week 4), considering treatment (dark chocolate, white chocolate) as intersubjects’ factors. Metagenomic analysis was performed following the general guidelines, which relies on the bioBakery computational environment. Results: DC group showed increased plasma polyphenols (from 154.7 ± 18.6 μg gallic acid equivalents/ml to 185.11 ± 57.6 μg gallic acid equivalents/ml, Δ pre vs. post = +30.41 ± 21.50) and significant improvements in lipid profiles: total cholesterol (Δ −32.47 ± 17.18 mg/dl DC vs. Δ −2.84 ± 6.25 mg/dl WC, Time × Treatment interaction p < .001), triglycerides (Δ −6.32 ± 4.96 mg/dl DC vs. Δ −0.42 ± 6.47 mg/dl WC, Time × Treatment interaction p < .001), low-density lipoprotein (Δ −18.42 ± 17.13 mg/dl vs. Δ −2.05 ± 5.19 mg/dl WC, Time × Treatment interaction p < .001), AA/EPA ratio (Δ −5.26 ± 2.35; −54.1% DC vs. Δ −0.47 ± 0.73, −6.41% WC, Time × Treatment interaction p < .001) compared with WC group. In addition, 4 weeks of intervention showed a significant increase in high-density lipoprotein concentration in DC group (Δ + 3.26 ± 4.49 mg/dl DC vs. Δ −0.79 ± 5.12 mg/dl WC). Microbial communities in the DC group maintained a slightly higher microbial stability over time (exhibiting lower within-subject community dissimilarity). Conclusion: Ingesting 30 g of dark chocolate over 4 weeks positively improved AA:EPA ratio and maintained gut microbial stability. Dark chocolate ingestion represents an effective nutritional strategy to improve blood lipid profiles in professional soccer players. What Are the Findings? Ingesting 30 g of dark chocolate for 4 weeks positively influences blood lipid AA: EPA ratio while maintaining gut microbial stability. What This Study Adds? Dietary intake of specific foods such as dark chocolate represents an alternative strategy to support the health and recovery of elite soccer players. What Impact Might This Have on Clinical Practice in the Future? From a clinical and translational perspective, dark chocolate ingestion positively modulates favorable blood lipid profiles and polyunsaturated fatty acid metabolism while maintaining gut microbial stability. Dark chocolate ingestion may be considered as an effective nutritional strategy in elite sport environments during periods of high-intensity training and congested competitions. Further research is required to determine functional outcomes associated with the observed improvements in blood lipid profiles.
Letter to the Editor Regarding Tuma et al. (2024)
Jeffrey A. Rothschild, Ed Maunder, and Bryan Saunders
Response Letter: Pharmacokinetic Profile of Caffeine and Its Two Main Metabolites in Dried Blood Spots After Five Different Oral Caffeine Administration Forms—A Randomized Crossover Study
Chiara Tuma, Andreas Thomas, Lasse Trede, Hans Braun, and Mario Thevis
Effect of Beta-Alanine Supplementation on Maximal Intensity Exercise in Trained Young Male Individuals: A Systematic Review and Meta-Analysis
George D. Georgiou, Kyriaki Antoniou, Stephanie Antoniou, Eleni Anna Michelekaki, Reza Zare, Ali Ali Redha, Konstantinos Prokopidis, Efstathios Christodoulides, and Tom Clifford
Beta-alanine is a nonessential amino acid that is commonly used to improve exercise performance. It could influence the buffering of hydrogen ions produced during intense exercise and delay fatigue, providing a substrate for increased synthesis of intramuscular carnosine. This systematic review evaluates the effects of beta-alanine supplementation on maximal intensity exercise in trained, young, male individuals. Six databases were searched on August 10, 2023, to identify randomized, double-blinded, placebo-controlled trials investigating the effect of chronic beta-alanine supplementation in trained male individuals with an age range of 18–40 years. Studies evaluating exercise performance through maximal or supramaximal intensity efforts falling within the 0.5–10 min duration were included. A total of 18 individual studies were analyzed, employing 18 exercise test protocols and 15 outcome measures in 331 participants. A significant (p = .01) result was observed with an overall effect size of 0.39 (95% confidence interval [CI] [0.09, 0.69]), in favor of beta-alanine supplementation versus placebo. Results indicate significant effects at 4 weeks of supplementation, effect size 0.34 (95% CI [0.02, 0.67], p = .04); 4–10 min of maximal effort, effect size 0.55 (95% CI [0.07, 1.04], p = .03); and a high beta-alanine dosage of 5.6–6.4 g per day, effect size 0.35 (95% CI [0.09, 0.62], p = .009). The results provide insights into which exercise modality will benefit the most, and which dosage protocols and durations stand to provide the greatest ergogenic effects. This may be used to inform further research, and professional or recreational training design, and optimization of supplementation strategies.
Retraction. Pharmacokinetic Profile of Caffeine and Its Two Main Metabolites in Dried Blood Spots After Five Different Oral Caffeine Administration Forms—A Randomized Crossover Study
The Anabolic Response to Protein Ingestion During Recovery From Exercise Has No Upper Limit in Magnitude and Duration In Vivo in Humans: A Commentary
Oliver C. Witard and Samuel Mettler
A comprehensive recent study by Trommelen et al. demonstrated that muscle tissue exhibits a greater capacity to incorporate exogenous exogenous protein-derived amino acids into bound muscle protein than was previously appreciated, at least when measured in “anabolically sensitive,” recreationally active (but not resistance-trained), young men following resistance exercise. Moreover, this study demonstrated that the duration of the postprandial period is modulated by the dose of ingested protein contained within a meal, that is, the postexercise muscle protein synthesis response to protein ingestion was more prolonged in 100PRO than 25PRO. Both observations represent important scientific advances in the field of protein metabolism. However, we respectfully caution that the practical implications of these findings may have been misinterpreted, at least in terms of dismissing the concept of protein meal distribution as an important factor in optimizing muscle tissue anabolism and/or metabolic health. Moreover, based on emerging evidence, this idea that the anabolic response to protein ingestion has no upper limit does not appear to translate to resistance-trained young women.