Browse

You are looking at 11 - 20 of 5,520 items for :

  • Physical Education and Coaching x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: All Content x
Clear All
Restricted access

James C. Morehen, Carl Langan-Evans, Elliot C.R. Hall, Graeme L. Close, and James P. Morton

Weight cycling is thought to increase the risk of obesity and cardiometabolic disease in nonathletic and athletic populations. However, the magnitude and frequency of weight cycling is not well characterized in elite athletes. To this end, we quantified the weight cycling practices of a male World Champion professional boxer competing at super middleweight (76.2 kg). Over a 5-year period comprising 11 contests, we assessed changes in body mass (n = 8 contests) and body composition (n = 6 contests) during the training camp preceding each contest. Time taken to make weight was 11 ± 4 weeks (range: 4–16). Absolute and relative weight loss for each contest was 12.4 ± 2.1 kg (range: 9.8–17.0) and 13.9% ± 2.0% (range: 11.3–18.2), respectively. Notably, the athlete commenced each training camp with progressive increases in fat mass (i.e., 12.5 and 16.1 kg for Contests 1 and 11) and reductions in fat-free mass (i.e., 69.8 and 67.5 kg for Contests 1 and 11, respectively). Data suggest that weight cycling may lead to “fat overshooting” and further weight gain in later life. Larger scale studies are now required to characterize the weight cycling practices of elite athletes and robustly assess future cardiometabolic disease risk. From an ethical perspective, practitioners should be aware of the potential health consequences associated with weight cycling.

Restricted access

Danielle Peers, Lindsay Eales, Kelvin Jones, Aidan Toth, Hernish Acharya, and Janice Richman–Eisenstat

The purpose of this study was to assess the safety and meaningfulness of a 15-week recreational dance and singing program for people with neuromuscular conditions. Within a transformative mixed-methods design, pulmonary function tests, plethysmography through wearable technology (Hexoskin vests), individualized neuromuscular quality-of-life assessments (version 2.0), and semistructured interviews were used. The interviews were analyzed through inductive, semantic thematic analysis. Although the sample sizes were small (six people with neuromuscular conditions), the authors found no evidence of safety concerns. There was evidence of respiratory improvements and reported improvements in swallowing and speech. The most notable quality-of-life changes included improvements related to weakness, swallowing, relationships, and leisure. The participants shared that the program offered meaningful social connection and embodied skills and safe and pleasurable physical exertion. The authors learned that recreational singing and dancing programs could be a safe and deeply meaningful activity for those with neuromuscular conditions that impact respiration.

Restricted access

Rebecca L. Jones, Trent Stellingwerff, Paul Swinton, Guilherme Giannini Artioli, Bryan Saunders, and Craig Sale

This study determined the influence of a high- (HI) versus low-intensity (LI) cycling warm-up on blood acid-base responses and exercise capacity following ingestion of sodium bicarbonate (SB; 0.3 g/kg body mass) or a placebo (PLA; maltodextrin) 3 hr prior to warm-up. Twelve men (21 ± 2 years, 79.2 ± 3.6 kg body mass, and maximum power output [W max] 318 ± 36 W) completed a familiarization and four double-blind trials in a counterbalanced order: HI warm-up with SB, HI warm-up with PLA, LI warm-up with SB, and LI warm-up with PLA. LI warm-up was 15 min at 60% W max, while the HI warm-up (typical of elites) featured LI followed by 2 × 30 s (3-min break) at W max, finishing 30 min prior to a cycling capacity test at 110% W max. Blood bicarbonate and lactate were measured throughout. SB supplementation increased blood bicarbonate (+6.4 mmol/L; 95% confidence interval, CI [5.7, 7.1]) prior to greater reductions with HI warm-up (−3.8 mmol/L; 95% CI [−5.8, −1.8]). However, during the 30-min recovery, blood bicarbonate rebounded and increased in all conditions, with concentrations ∼5.3 mmol/L greater with SB supplementation (p < .001). Blood bicarbonate significantly declined during the cycling capacity test at 110%W max with greater reductions following SB supplementation (−2.4 mmol/L; 95% CI [−3.8, −0.90]). Aligned with these results, SB supplementation increased total work done during the cycling capacity test at 110% W max (+8.5 kJ; 95% CI [3.6, 13.4], ∼19% increase) with no significant main effect of warm-up intensity (+0.0 kJ; 95% CI [−5.0, 5.0]). Collectively, the results demonstrate that SB supplementation can improve HI cycling capacity irrespective of prior warm-up intensity, likely due to blood alkalosis.

Restricted access

Alyssa N. Fick, Robert J. Kowalsky, Matthew S. Stone, Christopher M. Hearon, and Tyler M. Farney

This study compared the acute and chronic impact of citrulline malate (CM) supplementation on muscle contractile properties and fatigue rate of the quadriceps. Eighteen recreationally trained males consumed both a placebo (PL) and CM treatment for two separate dosing periods. The first experimental testing session for each dosing period was considered the baseline day, the second session the acute day, and the third session the chronic day, which followed seven consecutive days of supplementation. All testing sessions included exercising on a cycle ergometer at 50%–60% of their max power output for 30 min followed by performing the Thorstensson test on an isokinetic dynamometer. A two-way (Supplement × Time) analysis of variance with repeated measures resulted in no significant interactions (p > .05) (PL: baseline day, acute day, chronic day vs. CM: baseline day, acute day, chronic day) for peak power (in watts) (469 ± 81, 490 ± 97, 502 ± 99 vs. 464 ± 85, 480 ± 103, 501 ± 81); peak torque (in newton meters) (150 ± 26, 157 ± 32, 161 ± 31 vs. 149 ± 27, 156 ± 33, 161 ± 26); fatigue rate (in percentage) (57 ± 9, 57 ± 10, 58 ± 9 vs. 57 ± 10, 56 ± 9, 58 ± 9); and heart rate (in beats per minute) (156 ± 17, 146 ± 13, 146 ± 9 vs. 155 ± 11, 146 ± 11, 146 ± 9). The results of this study suggest that neither acute nor chronic supplementation of CM had an effect on recovery or fatigue rate of the quadriceps.

Restricted access

Patrick B. Wilson

Urine specific gravity (USG) thresholds are used in practice and research to determine hypohydration. However, some limited research has found that body size and body composition may impact USG, suggesting that fixed cutoffs may be insensitive. Cross-sectional data from 3,634 participants of the 2007–2008 National Health and Nutrition Examination Survey were analyzed. Along with USG, body mass index (BMI), estimated lean body mass (LBM), and dietary intake were quantified. Logistic regression models were used to evaluate whether higher quintiles of BMI and LBM were associated with elevated USG (USG ≥ 1.020 and ≥1.025) after accounting for dietary moisture and sodium. The USG (1.018 ± 0.0003 vs. 1.015 ± 0.0004); BMI (28.4 ± 0.2 vs. 28.0 ± 0.2 kg/m2); LBM (60.9 ± 0.3 vs. 42.2 ± 0.2 kg); dietary moisture (3,401 ± 92 vs. 2,759 ± 49 g/day); and dietary sodium (4,171 ± 85 vs. 2,959 ± 50) were greater in men than in women (p < .05). Men and women in the fifth quintiles of BMI or LBM (vs. Quintile 1) had greater odds (2.00–3.68, p < .05) of elevated USG. (The only exception was for the association between BMI and USG ≥ 1.025 in men.) Being in Quintile 4 of LBM or BMI (vs. Quintile 1) also tended to be associated with higher odds of elevated of USG, though this pattern was more consistent when using USG ≥ 1.020 than USG ≥ 1.025. In summary, BMI and LBM are associated with USG at the population level. These results affirm that USG depends on body size and composition and raise questions about using fixed USG thresholds for determining hypohydration, particularly for people in the upper quintiles of BMI and LBM.

Restricted access

Tue A.H. Lassen, Lars Lindstrøm, Simon Lønbro, and Klavs Madsen

The present study investigated individualized sodium bicarbonate (NaHCO3 ) supplementation in elite orienteers and its effects on alkalosis and performance in a simulated sprint orienteering competition. Twenty-one Danish male and female elite orienteers (age = 25.2 ± 3.6 years, height = 176.4 ± 10.9 cm, body mass = 66.6 ± 7.9 kg) were tested twice in order to identify individual time to peak blood bicarbonate (HCO3 peak) following supplementation of 0.3 g/kg body mass NaHCO3 with and without warm-up. The athletes also performed two 3.5 km time-trial runs (TT-runs) following individualized timing of NaHCO3 supplementation (SBS) or placebo (PLA) on separate days in a randomized, double-blind, cross-over design. The occurrence of individual peak HCO3 and pH ranged from 60 to 180 min. Mean HCO3 and pH in SBS were significantly higher compared with PLA 10 min before and following the TT-run (p < .01). SBS improved overall performance in the 3.5 km TT-run by 6 s compared with PLA (775.5 ± 16.2 s vs. 781.4 ± 16.1 s, respectively; p < .05). SBS improved performance in the last half of the TT-run compared with PLA (p < .01). In conclusion, supplementation with NaHCO3 followed by warm-up resulted in individualized alkalosis peaks ranging from 60 to 180 min. Individualized timing of SBS in elite orienteers induced significant alkalosis before and after a 3.5 km TT and improved overall performance time by 6 s, which occurred in the last half of the time trial. The present data show that the anaerobic buffer system is important for performance in these types of endurance events lasting 12–15 min.

Open access

Katie Slattery, Stephen Crowcroft, and Aaron J. Coutts

Restricted access

Minhyun Kim, José A. Santiago, Chan Woong Park, and Emily A. Roper

Grounded in occupational socialization theory, the authors examined adapted physical education (APE) teachers’ job satisfaction. Twelve (nine female and three male) APE teachers who had 3–43 years of teaching experience participated in the study. A semistructured interview was employed. The interviews focused on the participants’ roles and responsibilities. The following questions guided this study: (a) What social agents positively impact APE teachers’ job satisfaction? (b) what APE teachers’ roles and responsibilities are related to job satisfaction? and (c) what type of working conditions are linked to APE teachers’ job satisfaction? Thematic analysis was employed to analyze the data. The following four themes emerged from the analysis: (a) support from administrators, physical education teachers, and colleagues; (b) relevant and meaningful professional development; (c) itinerant working conditions; and (d) seeing students’ progress and achievement. The results of this study provide several implications to enhance APE teachers’ job satisfaction.